摘要:
A method of fabricating an all-back-contact (ABC) solar cell is disclosed. A doped layer of a first polarity (102) is formed on a rear side of a wafer (100). A first masking structure (106, 110) is formed on the doped layer of the first polarity. Portions of the first masking structure (106, 110) are removed using a first laser ablation process. Doped regions of a second polarity (118, 135, 137) are formed in areas where the first masking structure has been removed. Contact bars (134, 136) are formed by screen printing and firing such that each contact bar is in contact with one of the doped regions (135, 137).
摘要:
A thin-film solar cell module and a method of interconnecting thin-film solar cells are described. The method comprises forming one or more grooves (200) in a semiconductor thin-film diode structure (202) on a superstrate (102) such that the diode structure is divided into a plurality of discrete solar cells (206), and such that pairs of sidewalls (204) of the respective solar cells have a doping polarity that is the same as that of a superstrate-side semiconductor layer of the diode structure. A non-continuous insulating layer (300) is formed on the diode structure such that one sidewall of each pair of sidewalls is covered by the insulating layer while the other sidewall of each pair and one or more surface contact regions of each solar cell remain exposed. A non-continuous conductive layer (400) is formed on the diode structure such that for each pair of adjacent first and second solar cells (206a, 206b), the exposed sidewall of the first solar cell is electrically connected to the surface contact regions of the second solar cell and remains free from electrical connection to the surface contact regions of the first solar cell.
摘要:
A method of interconnecting thin-film solar cells formed on a foreign insulating substrate or superstrate is described: the top and bottom layers of the thin-film solar cells having a sheet resistances below 10,000 Ω/sq. The method comprises the steps of forming a thin-film solar cell structure comprising at least an n+-type layer (2,3) and a p+ type layer (4) on the foreign substrate/superstrate, and forming one or more electrical contacts (19), each contact being between an n+ type layer on one portion of the substrate/superstrate to a p+-type layer (16) on an adjacent portion of the substrate/superstrate. Each electrical contact (19) is formed, at least in part, from respective materials of the n+ type layer (2,3) and the p+ type layer (4) of the initially formed solar cell structure: and the materials of the n+ type layer (2,3) and the p+ type layer (4) forming at least part of each electrical contact are brought into a liquid phase by eg laser a first time and subsequently into a mixed solid phase (16) during the formation of the other side of the electrical contact (19). Deposition of a conductor at the bottom of the groove formed by the laser forms the electrical interconnection (19) between the neighbouring cells.
摘要:
A thin-film solar cell module, and a method of interconnecting two or more thin-film solar cells on a foreign supporting substrate. The method comprises the step of wire-bonding an air-side electrode of one thin-film solar cell to a substrate-side electrode of an adjacent solar cell, such that said thin-film solar cells are connected in series.
摘要:
A photolithography method for contacting one or more contact regions of a thin-film semiconductor structure on a transparent supporting material is disclosed. The method comprises the steps of forming one or more openings (6a) in the semiconductor structure (2, 3, 4) to substantially expose respective surface portions (5a) of the supporting material (5) and respective contact regions (4a); covering the surface of the semiconductor structure with a positive photoresist (7); illuminating the semiconductor structure with an exposing light through the supporting material such that first portions of the photoresist covering the substantially exposed surface portions of the supporting material and at least portions of the contact regions respectively are exposed to the exposing light and such that the exposing light is absorbed in the semiconductor structure, leaving one or more second portions of the photoresist covering the semiconductor structure unexposed. Preferably, a conductive layer (9) is deposited over the remaining second portions of the photoresist, the surface portions (5a) of the supporting material, and at least portions of the contact regions, such that the conductive layer may be in contact with the supporting substrate and making electrical contact with the contact regions. Preferably, the remaining second portions of the photoresist are chemically dissolved, and portions of the conductive layer sitting above the second portions of the photoresist are lifted off, leaving remaining portions of the conductive layer in contact with the supporting substrate and making electrical contact with the contact regions.