摘要:
Alterations in the genetic content of a cell underlie many human diseases, including cancers. A method called Digital Karyotyping provides quantitative analysis of DNA copy number at high resolution. This approach involves the isolation and enumeration of short sequence tags from specific genomic loci. Analysis of human cancer cells using this method identified gross chromosomal changes as well as amplifications and deletions, including regions not previously known to be altered. Foreign DNA sequences not present in the normal human genome could also be readily identified. Digital Karyotyping provides a broadly applicable means for systematic detection of DNA copy number changes on a genomic scale.
摘要:
Thymidylate synthase (TYMS) gene amplification was observed in 23% of 31 5-FU resistant liver metastases, while no amplification was observed in metastases of patients that had not been treated with 5-FU. Patients with metastases containing TYMS amplification had a substantially shorter median survival (329 days) than those without amplification (1021 days, p
摘要:
Given the important role of protein kinases in pathways affecting cellular growth and invasion, we have analyzed 340 serine/threonine kinases for genetic mutations in colorectal cancers. Mutations in eight genes were identified, including three members of the phosphatidylinositol-3-kinase (PI3K) pathway; the alterations in the latter genes each occurred in different tumors and did not overlap with mutations in PIK3CA or other non-serine-threonine kinase (STK) members of the PI3K pathway, suggesting that mutations in any of these genes had equivalent tumorigenic effects. These data demonstrate that the PI3K pathway is a major target for mutational activation in colorectal cancers and provide new opportunities for therapeutic intervention.
摘要:
Given the important role of protein kinases in pathways affecting cellular growth and invasion, we have analyzed 340 serine/threonine kinases for genetic mutations in colorectal cancers. Mutations in eight genes were identified, including three members of the phosphatidylinositol-3-kinase (PI3K) pathway; the alterations in the latter genes each occurred in different tumors and did not overlap with mutations in PIK3CA or other non-serine-threonine kinase (STK) members of the PI3K pathway, suggesting that mutations in any of these genes had equivalent tumorigenic effects. These data demonstrate that the PI3K pathway is a major target for mutational activation in colorectal cancers and provide new opportunities for therapeutic intervention.
摘要:
Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high density microarrays and sequenced all known protein-coding genes and miRNA genes using Sanger sequencing. We found that, on average, each tumor had 11 gene alterations, markedly fewer than in common adult cancers. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone H3K4 trimethylase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.
摘要:
Medulloblastoma (MB) is the most common malignant brain tumor of children. To identify the genetic alterations in this tumor type, we searched for copy number alterations using high density microarrays and sequenced all known protein-coding genes and miRNA genes using Sanger sequencing. We found that, on average, each tumor had 11 gene alterations, markedly fewer than in common adult cancers. In addition to alterations in the Hedgehog and Wnt pathways, our analysis led to the discovery of genes not previously known to be altered in MBs. Most notably, inactivating mutations of the histone H3K4 trimethylase genes MLL2 or MLL3 were identified in 16% of MB patients. These results demonstrate key differences between the genetic landscapes of adult and childhood cancers, highlight dysregulation of developmental pathways as an important mechanism underlying MBs, and identify a role for a specific type of histone methylation in human tumorigenesis.
摘要:
Yeast genes which are differentially expressed during the cell cycle are described. They can be used to study, affect, and monitor the cell cycle of a eukaryotic cell. They can be used to obtain human homologs involved in cell cycle regulation. They can be used to identify antifungal agents and other classes of drugs. They can be formed into arrays on solid supports for interrogation of a cell's transcriptome under various conditions.
摘要:
Phosphatidylinositol 3-kinases (PI3Ks) are known to be important regulators of signaling pathways. To determine whether PI3Ks are genetically altered in cancers, we analyzed the sequences of the P13K gene family and discovered that one family member, PIK3CA, is frequently mutated in cancers of the colon and other organs. The majority of mutations clustered near two positions within the P13K helical or kinase domains. PIK3CA represents one of the most highly mutated oncogenes yet identified in human cancers and is useful as a diagnostic and therapeutic target.
摘要:
Protein kinases are important signaling molecules involved in tumorigenesis. Mutational analysis of the human tyrosine kinase gene family (98 genes) identified somatic alterations in −20% of colorectal cancers, with the majority of mutations occurring in NTRK3, FES, GUCY2F and a previously uncharacterized tyrosine kinase gene called MCCK/MLK4. Most alterations were in conserved residues affecting key regions of the kinase domain. These data represent a paradigm for the unbiased analysis of signal transducing genes in cancer and provide useful targets for therapeutic intervention.
摘要:
Pancreatic Neuroendocrine Tumors (PanNETs) are a rare but clinically important form of pancreatic neoplasia. To explore the genetic basis of PanNETs, we determined the exomic sequences of ten non-familial PanNETs and then screened the most commonly mutated genes in 58 additional PanNETs. Remarkably, the most frequently mutated genes specify proteins implicated in chromatin remodeling: 44% of the tumors had somatic inactivating mutations in MEN-1, which encodes menin, a component of a histone methyltransferase complex; and 43% had mutations in genes encoding either of the two subunits of a transcription/chromatin remodeling complex consisting of DAXX (death-domain associated protein) and ATRX (alpha thalassemia/mental retardation syndrome X-linked). Clinically, mutations in the MEN1 and DAXX/ATRX genes were associated with better prognosis. We also found mutations in genes in the mTOR (mammalian target of rapamycin) pathway in 14% of the tumors, a finding that could potentially be used to stratify patients for treatment with mTOR inhibitors.