摘要:
Super cooling the cryogenic liquid propellant in a vehicle propellant tank densities the propellant allowing the vehicle propellant tank to carry more fuel in the same volume tank while lowering the vapor pressure and thus the tank operating pressure. Lowering the tank operating pressure reduces the stress and therefore allows the walls of the tank to be thinner. Both the smaller tank volume and thinner tank wall results in an overall smaller and lighter vehicle with increased payload capability. The cryogenic propellant can be supercooled well below the normal boiling point temperature level by transporting the liquid propellant from the vehicle tanks to a ground based cooling unit which utilizes a combination of heat exchanger and compressor. The compressor lowers the coolant fluid bath pressure resulting in a low temperature boiling liquid which is subsequently used to cool the recirculating liquid. The cooled propellant is then returned to the vehicle propellant tank. In addition to reducing the vehicle size and weight the invention also allows location of the vent valve on the ground, elimination of on-board recirculation pumps or bleed systems, smaller and lighter engine pumps and valves, lighter and more stable ullage gas, and significant reduction in tank fill operation. All of these mentioned attributes provide lower vehicle weight and cost.
摘要:
An improved and simplified system for densifying a cryogenic liquid for space vehicles is provided, which includes a heat exchanger having heat exchange tubes therein for receiving a flow of liquid from a storage tank, for example a liquid propellant in a vehicle storage tank. The heat exchanger is filled around the exchange tubes with a two-component bath, the volume of a primary component substantially exceeding the volume of a secondary component. The secondary component has a boiling temperature that is lower than the boiling temperature of the primary component, and both are lower than the boiling temperature of the cryogenic liquid. In one example, the liquid to be densified is oxygen, the primary component is liquid nitrogen, and a secondary component is liquid hydrogen. The secondary component is preferably injected into the heat exchanger in separate flows to prevent localized freezing of the first component. A manifold having a plurality of injectors may be used for introducing the second component to the heat exchanger. A control system receives inputs from one or more sensors within the heat exchanger and operates valves that control the flow of the first and second components of the heat exchange bath.
摘要:
A computer program is disclosed for specifying and solving a fluid transfer problem. Schematic manager means are provided for generating and modifying a pictorial representation of a fluid system schematic having a plurality of components. The schematic manager means Is fluid and process independent. Replicator means are provided for generating a set of simultaneous equations from the pictorial representation and for assuring that the schematic manager remains fluid and process independent. A generic run-time simulation module is provided for solving the set of simultaneous equations, thereby allowing the computer program to adapt to variations in component state and fluid state as a function of system parameters. A fluid and property database manager is invoked by the simulation module, for allowing simulation of fluid flow processes having fluid states which may be unknown at the time of model creation. The data display routine is provided for displaying program results, thereby obviating any requirement for user coding.
摘要:
Slush is made from a liquid using slush making systems or according to slush making processes. A jacketed vessel of the processes and the systems has an interior wall that defines an interior space. The interior space comprises a top and a bottom. The interior space has an average overall cross-sectional area taken through a vertical axis extending generally between the top and the bottom. The interior space also has a collection portion having an average collection portion cross-sectional area taken through the vertical axis that is less than the average overall cross-sectional area. The liquid is placed into the interior space and the interior walls are cooled. Slush forms on the interior walls and migrates to the collection portion. The collection portion is located at the interior space bottom when the slush density is higher than the liquid density and the collection portion is located at the interior space top when slush density is less than the liquid density. To facilitate the migration of the slush to the collection portion, at least a conical portion of the interior space has the general shape of a cone and the collection portion is located in the proximity of an apex of the conical portion, thereby helping to funnel the slush to the collection portion. The cryogenic liquid to be made into slush may be oxygen, nitrogen, hydrogen, helium, or water. The slush may be used to densify cryogenic liquids, such as cryogenic liquid propellants.
摘要:
Leakage of propellants such as oxygen and hydrogen in an enclosed environment in the atmosphere can lead to fires or explosions. For storage tanks on reusable launch vehicles such as the space shuttle where propellant is to be stored in the cargo bay of the vehicle, the storage tank should be filled while the vehicle is at a safe altitude to avoid the dangers associated with propellant leakage. The invention a process for filling propellant tanks at safe altitudes where if there is propellant leakage ignition will not occur. The process involves launching the vehicle with an inert gas in the storage tanks, dumping the inert gas and filling the tanks in the cargo bay from the main propellant tanks during the launch once the vehicle is at a safe altitude. The propellant can be dumped overboard and the storage tanks filled with an inert gas in case of a mission abort if the vehicle needs to make an emergency landing.
摘要:
The fluid management system comprises a mixing/recirculation system including an external recirculation pump for receiving fluid from a zero gravity storage system and returning an output flow of the fluid to the storage system. An internal axial spray injection system is provided for receiving a portion of the output flow from the recirculation pump. The spray injection system thermally de-stratifies liquid and gaseous cryogenic fluid stored in the storage system.