摘要:
Liquid crystal optoelectronic devices are produced by fabricating a wafer-level component structure and affixing a plurality of discrete components to a surface structure prior to singulating the individual devices therefrom. After singulation, the individual devices include a portion of the wafer-level fabricated structure and at least of the discrete components. The wafer-level structure may include a liquid crystal and controlling electrodes, and the discrete components may include fixed lenses or image sensors. The discrete components may be located on either or both of two sides of the wafer-level structure. Multiple liquid crystal layers may be used to reduce nonuniformities in the interaction with light from different angles, and to control light of different polarizations. The liquid crystal devices may function as optoelectronic devices such as tunable lenses, shutters or diaphragms.
摘要:
A camera module and method for focusing a tunable lens configured to continuously vary its optical power in response to a drive signal. A drive circuit generates the drive signal so that the tunable lens performs a continuous scan of its optical power. An image sensor is configured to acquire light images passing through the tunable lens, and to convert the light images to image signals during the continuous scan. A processor is configured to generate focus scores of the acquired light images using the image signals during the continuous scan. The processor is configured to determine from the focus scores a peak focus score achieved or achievable, and to instruct the drive circuit to adjust the drive signal so that the tunable lens settles at a value of the optical power that corresponds to the peak focus score.
摘要:
A camera module and method for focusing a tunable lens configured to continuously vary its optical power in response to a drive signal. A drive circuit generates the drive signal so that the tunable lens performs a continuous scan of its optical power. An image sensor is configured to acquire light images passing through the tunable lens, and to convert the light images to image signals during the continuous scan. A processor is configured to generate focus scores of the acquired light images using the image signals during the continuous scan. The processor is configured to determine from the focus scores a peak focus score achieved or achievable, and to instruct the drive circuit to adjust the drive signal so that the tunable lens settles at a value of the optical power that corresponds to the peak focus score.
摘要:
A tunable liquid crystal optical device is described. The optical device has an electrode arrangement associated with a liquid crystal cell and includes a hole patterned electrode, wherein control of the liquid crystal cell depends on electrical characteristics of liquid crystal optical device layers. The optical device further has a circuit for measuring said electrical characteristics of the liquid crystal optical device layers, and a drive signal circuit having at least one parameter adjusted as a function of the measured electrical characteristics. The drive signal circuit generates a control signal for the electrode arrangement.
摘要:
Methods and apparatus for testing operation of a single or multiple tunable active optical device(s) operated by one or more driving electrodes are described Test methods and apparatus are provided for device testing without necessarily requiring direct physical contact with the driving electrodes Testing subjects devices to incident light along an optical path and to an external electric field applied to the device producing a dipolar charge distribution within the electrodes, causing the device to operate The effect of device operation on incident light is optically sensed The sensed effect is analyzed to identify device defects Test methods and apparatus are provided for testing multiple unsingulated devices during fabrication employing a strip contact structure having contact strips connected to multiple devices and extending to wafer edges, such that singulating devices leaves portions of the strip contact structure exposed on device dice edges providing electrical contacts in use.
摘要:
A tunable liquid crystal optical device is described. The optical device has an electrode arrangement associated with a liquid crystal cell and includes a hole patterned electrode, wherein control of the liquid crystal cell depends on electrical characteristics of liquid crystal optical device layers. The optical device further has a circuit for measuring said electrical characteristics of the liquid crystal optical device layers, and a drive signal circuit having at least one parameter adjusted as a function of the measured electrical characteristics. The drive signal circuit generates a control signal for the electrode arrangement.
摘要:
Methods and apparatus for testing operation of a single or multiple tunable active optical device(s) operated by one or more driving electrodes are described Test methods and apparatus are provided for device testing without necessarily requiring direct physical contact with the driving electrodes Testing subjects devices to incident light along an optical path and to an external electric field applied to the device producing a dipolar charge distribution within the electrodes, causing the device to operate The effect of device operation on incident light is optically sensed The sensed effect is analyzed to identify device defects Test methods and apparatus are provided for testing multiple unsingulated devices during fabrication employing a strip contact structure having contact strips connected to multiple devices and extending to wafer edges, such that singulating devices leaves portions of the strip contact structure exposed on device dice edges providing electrical contacts in use.
摘要:
An auto-focus system employing a tunable liquid crystal lens is provided that collects images at different optical power values as the liquid crystal molecules are excited between a ground state and a maximum optical power state tracking image focus scores. An image is acquired at a desired optical power value less than maximum optical power established with the liquid crystal molecules closer a fully excited state than the maximum optical power state having the same image focus score. This drive signal employed during image acquisition uses more power than was used to achieve the same optical power value during the auto-focus scan, while actively driving the liquid crystal molecules is fast. A pause due to image transfer/processing delays after acquisition is employed to allow slow relaxation of the liquid crystal molecules back to the ground state in preparation for a subsequent focus search.
摘要:
A variable focus liquid crystal lens includes a nematic liquid crystal/monomer mixture having a spatially inhomogenous polymer network structure, and an electrode for applying a substantially uniform voltage to the nematic liquid crystal/monomer mixture. The lens is created within a cell by applying a substantially uniform electric field to the nematic liquid crystal/monomer mixture within the cell, while simultaneously irradiating the nematic liquid crystal/monomer mixture using a laser beam having a shaped intensity distribution, so as to induce formation of a spatially inhomogenous polymer network structure within the cell.
摘要:
A variable optical attenuator comprises a portion of a waveguide through which optical energy can propagate having a side surface through which optical energy can be extracted; a layer of thermo sensitive material having controllable optical properties, covering the side surface of the portion; a helicoidal heating element wrapped around the waveguide and covering at least the layer. The helicoidal heating element can be used to control the optical properties of the material by inducing a thermal transfer profile on the material using the heat dissipation of the heater through the material; wherein a wave propagation in the waveguide is influenced by the optical properties of the material controlled by the heating element. The heating element can also have a measurable temperature coefficient; a controller for controlling the temperature of the heating element as a function of the temperature coefficient; wherein the temperature of the heating element can be controlled without using an additional temperature probe. And the heating element can also be used to control the curing of the material using the heat dissipation of the heater through the material, thereby providing a mechanical armature for the material and the waveguide; wherein the mechanical armature solidifies the attenuator.