Abstract:
There is provided a method for processing a substrate, comprising: preparing a substrate processing device including a rotatable stage on which a substrate is placed, a frozen heat transfer body fixed on a backside of the stage with a gap interposed therebetween and cooled to an extremely low temperature, a gas supply mechanism configured to supply to the gap a cooling gas for transferring a cold heat of the frozen heat transfer body to the stage, a rotation mechanism configured to rotate the stage, and a processing mechanism configured to process the substrate; preheating the stage such that a temperature of the stage reaches a steady cooling temperature within a fixed range; and after preheating, continuously processing a plurality of substrates by the processing mechanism while rotating the stage that has reached the steady cooling temperature in a state where a substrate having a specific temperature higher than or equal to room temperature is placed on the stage.
Abstract:
A fixing unit fixes a plate-shaped member to a fixing base member. The fixing unit includes: a pressing unit configured to press the plate-shaped member toward the fixing base member; and a plurality of positioning units, installed at the fixing base member to be in contact with side surfaces of the plate-shaped member, and configured to place the plate-shaped member with respect to the fixing base member. Each of the positioning units includes: a shaft to be installed at the fixing base member; and a slide part movable along the shaft, and the slide part includes a contact part to be in contact with one of the side surfaces of the plate-shaped member and a clearance part formed on the contact part to have a smaller width than that of the contact part.
Abstract:
There is provided a mounting table. The mounting table comprises: a dielectric plate having a through-hole at an outer peripheral portion thereof and having a substrate support on which a substrate is placed; a support member; a first heat insulating member disposed between the dielectric plate and the support member; a first biasing member disposed between the first heat insulating member and the support member, and a fastening member configured to detachably fix the dielectric plate to the support member by way of penetrating through the through-hole of the dielectric plate, the first heat insulating member, and the first biasing member.
Abstract:
A substrate processing apparatus includes a processing chamber where a substrate support on which a substrate is placed and a target holder configured to hold a target are disposed, a freezing device disposed with a gap with respect to a bottom surface of the substrate support and having a chiller and a cold heat medium laminated on the chiller, and a rotating device configured to rotate the substrate support. The substrate processing apparatus further includes a first elevating device configured to raise and lower the substrate support, a coolant channel formed in the chiller to supply a coolant to the gap, and a cold heat transfer material disposed in the gap and being in contact with the substrate support and the cold heat medium so as to transfer heat therebetween.
Abstract:
A film forming apparatus for forming a film on a moving substrate by sputtering includes a processing container, a placement base having a placement surface on which a substrate is placed, a holder configured to hold a target, an upper shield member configured to divide a space in the processing container into an upper space and a lower space, a movement mechanism configured to move the placement base in a movement direction parallel to the placement surface and to move the placement base in the vertical direction, a leg member configured to connect the placement base and the movement mechanism, and a lower shield member configured to define the movement space together with the upper shield member. The lower shield member includes a fixed shield member and a moving shield member.
Abstract:
A placing table structure according to an embodiment includes: a fixedly disposed refrigerated heat transfer element; a rotatable outer cylinder disposed around the refrigerated heat transfer element; and a stage connected to the outer cylinder and disposed above an upper surface of the refrigerated heat transfer element with inclusion of a gap between the refrigerated heat transfer element and the stage.
Abstract:
A sputtering device includes a processing chamber where a substrate is accommodated, and a slit plate that partitions the processing chamber into a first space where a target member is disposed and a second space where the substrate is disposed. The slit plate includes an inner member having an opening that penetrates therethrough in a thickness direction of the slit plate, and an outer member disposed around the inner member. The inner member is attachable to and detachable from the outer member.