摘要:
An implantable medical device is connectable to an epicardial left ventricular lead having at least one epicardial electrode and a myocardium penetrating catheter with at least one endocardial electrode and present in a lumen of the lead. The device comprises a pulse generator controller that controls a ventricular pulse generator to generate pulses to be applied to the epicardial and endocardial electrodes. The controller uses an endocardial-to-epicardial time interval or epicardial-to-endocardial time interval to coordinate endocardial and epicardial activation of the left ventricle to thereby achieve cardiac pacing that closely mimics the natural electrical activation pattern of a healthy heart.
摘要:
An implantable medical device is connectable to an epicardial left ventricular lead having at least one epicardial electrode and a myocardium penetrating catheter with at least one endocardial electrode and present in a lumen of the lead. The device comprises a pulse generator controller that controls a ventricular pulse generator to generate pulses to be applied to the epicardial and endocardial electrodes. The controller uses an endocardial-to-epicardial time interval or epicardial-to-endocardial time interval to coordinate endocardial and epicardial activation of the left ventricle to thereby achieve cardiac pacing that closely mimics the natural electrical activation pattern of a healthy heart.
摘要:
In an implantable medical device, such as a cardiac stimulator such as a pacemaker, and method for predicting patient responses to physical exertion, the patient response is monitored over time to evaluate disease progression and pacing therapies of cardiac stimulators are adapted based on the predicted patient response. A current cardiac status indicator for the patient is created indicating a response of the patient to an increased physical activity as a primarily heart rate response or as a primarily a stroke volume response. The pacing parameters of the cardiac stimulator can thereafter be adapted depending on the current cardiac status indicator, wherein the adapted pacing parameters include a first pacing setting if the current cardiac status indicator indicates a primarily heart rate response or a second pacing setting if the current cardiac status indicator indicates a primarily stroke volume response.
摘要:
An implantable medical device applies an electric signal over two electrodes and measures the resulting electric signal over a candidate pair of neighboring electrodes on a lead for a first heart ventricle or over a candidate electrode of the lead and a case electrode. An impedance signal is determined for each candidate pair or electrode based on the applied signal and the measured resulting signal. A time difference between start of contraction in a second ventricle and the timing of local myocardial contraction as identified from the impedance signal at the site of the candidate pair or electrode is determined for each candidate pair or electrode. An optimal pacing electrode is selected to correspond to one of the electrodes of the candidate pair having the largest time difference or the candidate electrode having largest time difference.
摘要:
An implantable medical device applies an electric signal over two electrodes and measures the resulting electric signal over a candidate pair of neighboring electrodes on a lead for a first heart ventricle or over a candidate electrode of the lead and a case electrode. An impedance signal is determined for each candidate pair or electrode based on the applied signal and the measured resulting signal. A time difference between start of contraction in a second ventricle and the timing of local myocardial contraction as identified from the impedance signal at the site of the candidate pair or electrode is determined for each candidate pair or electrode. An optimal pacing electrode is selected to correspond to one of the electrodes of the candidate pair having the largest time difference or the candidate electrode having largest time difference.
摘要:
The present invention relates generally to methods and systems for optimizing stimulation of a heart of a patient. Hemodynamical index signals reflecting a mechanical functioning of a heart of a patient are recorded at different hemodynamical states. Corresponding hemodynamical reference signals at corresponding hemodynamical states are recorded. At least one hemodynamical index parameter is extracted from the recorded hemodynamical index signals. The at least one hemodynamical index parameter is a measure of the mechanical functioning of the heart and a hemodynamical index model is created, wherein the hemodynamical index model is based on the at least one hemodynamical index parameter and a comparison between output results from the hemodynamical index model and corresponding hemodynamical reference signals. From this hemodynamical index model, a hemodynamical index can be derived, which then can be used in determining patient customized cardiac pacing settings of the cardiac stimulator.
摘要:
The present invention relates to the segmentation of two-dimensional gel electrophoresis images (2D images). The method according to the invention associates an initial protein seed candidate with an interface circumscribing said seed and thereafter brings said interface to evolve in accordance with a defined speed function F(x, y). The evolution of the interface is halted by a stopping criterion, C. According to the invention, the speed function can depend on a wide variety of parameters such as the pixel intensity, the curvature of the pixel intensity, the distance to the initial seed, the curvature and/or shape and/or normal direction and/or position of the evolving interface. The stopping criterion depends e.g. on the speed function F and/or the time of arrival T(x, y) and/or the departure time Td for said interface. The invention provides criteria for a specific treatment of saturated spots and to mike sure that interfaces never overlap.