摘要:
An energizable design image portion (203) of a provided design pattern is printed on a provided substrate (201) using a functional ink comprised of at least one energy emissive material. A passive design image portion (202) of that design pattern is then also printed on that substrate using at least one graphic arts ink. In a preferred embodiment this apparatus may further comprise electrically conductive electrodes (204) on the substrate to permit selective energization of the energy emissive material to thereby induce illumination of the energizable design image portion of the design pattern.
摘要:
An energizable design image portion of a provided design pattern (101) is printed (103) on a provided substrate (101) using a functional ink comprised of at least one energy emissive material. A passive design image portion of that design pattern is then also printed (104) on that substrate using at least one graphic arts ink. In a preferred embodiment this process (100) further provides for printing (105) electrically conductive electrodes on the substrate to permit selective energization of the energy emissive material to thereby induce illumination of the energizable design image portion of the design pattern.
摘要:
A mesoscale microelectromechanical system (MEMS) package for a micro-machine. The mesoscale micro-machine is formed on a printed circuit board (10) at the same time and of the same materials as the mesoscale micro-machine package. Both the micro-machine and the package have a first metal layer (12, 16), an insulating member (22, 26) formed on the first metal layer, and a second metal layer (32, 36) situated on the insulating layer. The package consists of a perimeter wall surrounding the micro-machine and a low-flow capping adhesive layer (40). The first metal layers of both the micro-machine and the package are formed in the same process sequence, and the insulating layers of both the micro-machine and the package are formed in the same process sequence, and the second metal layers of both the micro-machine and the package are formed in the same process sequence. The low-flow capping adhesive secures an optional cover (46) on the package to provide an environmental seal.
摘要:
A method for providing an underfill material on an integrated circuit chip at the wafer level. The wafer (10) typically contains one or more integrated circuit chips (12), and each integrated circuit chip typically has a plurality of solder bumps (34) on its active surface. The wafer is first diced (22) on the active surface side to form channels (38) that will ultimately define the edges (39) of each individual integrated circuit chip, the dicing being of such a depth that it only cuts part-way through the wafer. The front side (36) of the wafer is then coated (24) with an underfill material (40). Generally, a portion (45) of each solder bump remains uncoated, but in certain cases the bumps can be completely covered. The back side of the wafer is then lapped, ground, polished or otherwise treated (26) so as to remove material down to the level of the previously diced channels. This reduction in the thickness of the wafer causes the original diced channels to now extend completely from the front side to the back side of the wafer. The wafer is then singulated (28) by cutting the underfill material (92) that was deposited in the channels during the coating step, so that the integrated circuit chip (12) is released from the wafer, and the underfill material that was coated on the active side remains affixed to the active surface of each individual integrated circuit chip.
摘要:
A method and apparatus for controlling light intensity from two or more light sources. A timing scheme is used to modulate the light sources. Light from the light sources is combined to form a beam and a photo-sensor senses the beam. In a time interval when only one of the light sources is activated, the signal from the photo-sensor is monitored and used in a feedback control circuit to control the active light source.
摘要:
A mesoscale micro electro-mechanical systems (MEMS) structure comprises an optical interface member (18) that moves with a pivoting member (15). Such movement serves to occlude and/or to complete an optical signal pathway (19).
摘要:
A unitary flexible substrate has three planar areas with components and conductors carried thereon. The substrate is folded to provide a subassembly with a compact packaging factor such that each planar area is in a different parallel plane. Two conductor-carrying projections of the substrate extend from different end portions of the substrate to free distal ends of the projections which are positioned adjacent to each other. The projection conductors, at the projection distal ends, are soldered to each other to provide a more direct, low resistance electrical connection between conductors on the substrate end portions. Heat sink rigidizer plates are attached to each of the three planar substrate portions. One rigidizer plate is thermally and planarly coupled to a metal heat sink cover of a protective housing for the folded subassembly. The other rigidizer plates are planarly bonded to each other to form a unitary support structure for two of the planar substrate portions.
摘要:
Light from a plurality of light sources is combined in a beam combiner. Photo-sensors are used to sense the intensity of each light source. Signals from the photo-sensors may be used to control the intensity of the light sources. The photo-sensors can be located in the beam combiner or located in the fringe of a collimated beam produced by the beam combiner. The illumination system has application in laser-scanning micro-projectors, for example.
摘要:
An alternating current (AC) powered self organizing wireless node (100, 400, 600) includes a self organizing wireless receiver-transmitter (115), an AC branch connection (105), an AC to direct current (DC) converter (110), a secondary power function (120), and a housing (150). The self organizing wireless receiver-transmitter can communicate information throughout a network of compatible self organizing nodes solely using radio transmission to and reception from nearby self-organizing nodes. The secondary power function can couple power to the AC to DC converter for powering the self organizing wireless receiver-transmitter when AC power is not provided. The AC powered self organizing wireless node is designed and fabricated for agency certification. The AC powered self organizing wireless node may include one or more sensors (125), sensor inputs (135), transducers (130), or control outputs (155).