摘要:
The present invention relates to a siloxane random copolymer having a repeating unit represented by the following general formula (I) (II) and (III) at random and a resin composition containing the same. ##STR1## Further, the invention relates to a process of producing a siloxane copolymer comprising the step of reacting at least one polycarbonate and/or dicarbonate of diol and, if needed, at least one diester of dicarboxylic acid with at least one specified silicon compound in the presence of an esterifying or ester exchange catalyst.
摘要:
It is an object of the present invention to provide a resin composition whose birefringence has been controlled. The object can be attained by a resin composition composed essentially of a resin (A) containing glutarimide units and acrylic ester units and a resin (B) containing glutarimide units, acrylic ester units, and aromatic vinyl units. The resin composition of the present invention is easy to manufacture, inexpensive, excellent in terms of transparency and heat resistance, and easily controllable in terms of orientation birefringence. Further, the resin composition of the present invention can be developed to be applied to an optical molding product of which transparency and heat resistance are required.
摘要:
To realize an imide resin which is favorable in optical use.The imide resin according to the present invention includes: a repeating unit represented by General Formula (1); a repeating unit represented by General Formula (2); and a repeating unit represented by General Formula (3), wherein an orientation birefringence of the imide resin ranges from −0.1×10−3 to 0.1×10−3, where each of R1 and R2 independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R3 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms, where each of R4 and R5 independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R6 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or an aryl group having 6 to 10 carbon atoms, where R7 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R8 represents an aryl group having 6 to 10 carbon atoms.
摘要:
Processes for producing an AB block copolymer, an ABA block copolymer or a multiblock copolymer are provided, which comprises adding an alkenyl-containing polymer (I) to a living or to an atom transfer radical polymerization system or a living cationic polymerization system.
摘要:
The present invention has its object to provide an isobutylene group block copolymer containing a highly reactive alkenyl group with a high rate of introduction of an alkenyl, and process for producing the same. An alkenyl-group-containing isobutylene group block copolymer comprising a polymer block derived from (a) a monomer component containing isobutylene group as a predominant monomer and (b) a monomer component not containing isobutylene group as a predominant monomer, in which said block copolymer has an alkenyl group of the following general formula (1).
摘要:
The present invention relates to a block copolymer (A) including a (meth)acrylic polymer block (a) and an acrylic polymer block (b). The (meth)acrylic polymer block (a) is preferably copolymerized with a monomer having a functional group having high cohesive force, such as a carboxyl group, so that the 5%-weight-loss temperature is 300° C. or more or the tensile strength is 3 MPa or more, and the hardness measured by a type A durometer according to JIS K6253 is 50 or less, and a compression set measured after 22 hours at 70° C. is 45% or less. The block copolymer (A) exhibits excellent thermal decomposition resistance and low compression set at high temperatures. The block copolymer (A) can be used as a soft material for automobile, and has low hardness, high adhesion, high oil resistance, high weather resistance, high heat resistance, high recycling property, high tensile properties, and high wax remover resistance.
摘要:
The present invention provides a curable composition that comprises a polymer (A) containing a cross-linkable silyl group and a condensation catalyst (B). The polymer (A) containing a cross-linkable silyl group is obtained by a process comprising the steps of conducting a radical polymerizable monomer in the presence of a thiocarbonylthio compound. For example, the polymer (A) is obtained by (i) initiating a reversible addition-fragmentation chain transfer polymerization of a radical polymerizable monomer in the presence of a thiocarbonylthio compound, and (ii) adding an unsaturated compound containing a cross-linkable silyl group for copolymerization when a consumed amount of the radical polymerizable monomer by the polymerization has reached a level of 80% or more.
摘要:
Provided are a block copolymer including a polymer block containing acrylonitrile or methacrylonitrile as a principal constituent, which is excellent in heat resistance, weatherability, oil resistance, flame retardancy, and low-temperature resistance and which can be economically produced; and a thermoplastic resin composition and an elastomer composition each containing the block copolymer. The block copolymer is produced by reversible addition-fragmentation chain transfer polymerization in the presence of a thiocarbonylthio group-containing compound.
摘要:
Objects of the present invention are to provide a process for easily producing an alkenyl-terminated vinyl polymer without using a metal compound requiring a complicated purification step, and to provide a curable composition containing the vinyl polymer. An alkenyl group is incorporated into an end of a vinyl polymer having a thiocarbonylthio structure at the end to produce an alkenyl-terminated vinyl polymer. Mixing this vinyl polymer with a compound having a hydrogen-silicon bond and a hydrosilylation catalyst gives the curable composition.
摘要:
A process for producing an isobutylene block copolymer, which comprises performing cationic polymerization of a monomer component containing isobutylene as a major monomer and a monomer component whose major monomer is not isobutylene in the presence of an initiator, wherein the polymerization is carried out in a mixed solvent containing a monohalogenated hydrocarbon solvent and a non-halogenated hydrocarbon solvent the monohalogenated hydrocarbon solvent containing a primary monohalogenated hydrocarbon having three to eight carbon atoms and/or a secondary monohalogenated hydrocarbon having three to eight carbon atoms, the non-halogenated hydrocarbon solvent containing an aliphatic hydrocarbon and/or an aromatic hydrocarbon.