Abstract:
The heat-sensitive transfer recording medium of the invention is such that an equilibrium moisture absorption rate at 23° C./50% of an undercoating layer containing a water-soluble polymer as a main component is about 15% or less, preferably 13% or less, and more preferably, a mean value (α) of the surface roughness (root mean square deviation Sq) of the heat-resistant lubricating layer is about 0.05-0.40 μm, a mean value (β) of the surface roughness (root mean square deviation Sq) of the heat-resistant lubricating layer after being allowed to stand for 10 minutes at 150° C. is about 0.00-0.70 μm, and a difference between the mean value (α) and the mean value (β) is about 0.00-0.30 μm.
Abstract:
The heat-sensitive transfer recording medium of the invention is such that an equilibrium moisture absorption rate at 23° C./50% of an undercoating layer containing a water-soluble polymer as a main component is about 15% or less, preferably 13% or less, and more preferably, a mean value (α) of the surface roughness (root mean square deviation Sq) of the heat-resistant lubricating layer is about 0.05-0.40 μm, a mean value (β) of the surface roughness (root mean square deviation Sq) of the heat-resistant lubricating layer after being allowed to stand for 10 minutes at 150° C. is about 0.00-0.70 μm, and a difference between the mean value (α) and the mean value (β) is about 0.00-0.30 μm.
Abstract:
There is provided a heat-sensitive transfer recording medium which is able to better suppress the occurrence of abnormal transfer during high-speed printing using a high-speed printer of sublimation transfer type and is able to improve transfer sensitivity in high-speed printing. The heat-sensitive transfer recording medium includes a base (10), a heat-resistant lubricating layer (20) formed on one surface of the base (10), an underlying layer (30) formed on the other surface of the base (10), and a dye layer (40) formed on a surface of the underlying layer (30), which is on the other side of a surface facing the base (10). In the heat-sensitive transfer recording medium, the underlying layer (30) has a major component that is a copolymer of polyester having a sulfonic group on a side chain and acrylic having at least one of a glycidyl group and a carboxyl group.
Abstract:
There is provided a heat-sensitive transfer recording medium which is able to better suppress the occurrence of abnormal transfer during high-speed printing using a high-speed printer of sublimation transfer type and is able to improve transfer sensitivity in high-speed printing. The heat-sensitive transfer recording medium includes a base (10), a heat-resistant lubricating layer (20) formed on one surface of the base (10), an underlying layer (30) formed on the other surface of the base (10), and a dye layer (40) formed on a surface of the underlying layer (30), which is on the other side of a surface facing the base (10). In the heat-sensitive transfer recording medium, the underlying layer (30) has a major component that is a copolymer of polyester having a sulfonic group on a side chain and acrylic having at least one of a glycidyl group and a carboxyl group.
Abstract:
There is provided a heat-sensitive transfer recording medium which is able to better suppress the occurrence of abnormal transfer during high-speed printing using a high-speed printer of sublimation transfer type and is able to improve transfer sensitivity in high-speed printing. The heat-sensitive transfer recording medium includes a base (10), a heat-resistant lubricating layer (20) formed on one surface of the base (10), an underlying layer (30) formed on the other surface of the base (10), and a dye layer (40) formed on a surface of the underlying layer (30), which is on the other side of a surface facing the base (10). In the heat-sensitive transfer recording medium, the underlying layer (30) has a major component that is a copolymer of polyester having a sulfonic group on a side chain and acrylic having at least one of a glycidyl group and a carboxyl group.