摘要:
In a high-frequency probe having a detachable end according to the present invention, parts relating to replacement of an end unit are three parts, that is, an end unit, a probe body, and a pressure block. The end unit comprises a coaxial cable, two slender plate-like ground plates. The coaxial cable is linear in the direction of the end of the high-frequency probe. The ground plates sandwich the coaxial cable. The probe body has an end unit support surface, a circuit board, an end unit arrangement surface and an end part guide. The end unit support surface forms a perpendicular surface used for fixing the end unit to a predetermined position in the end side of the central block in a central part of a surface of the body block. The circuit board connects the end unit to a coaxial connector. The end unit arrangement surface forms a plane in an end side of the body block. And further the guide groove positions and fixes the ground plate in the end part. It is capable to supply positioning pins and a positioning pin holes in mutual contact surfaces for positioning. The present invention makes it possible to adjust characteristic impedance of the probe end part by providing an elastically-shaped part for securing contact pressure and using a pipe or the ground plate in an exposed part of the coaxial inner conductor for performing gap adjustment.
摘要:
A high-frequency probe according to the present invention comprises a probe chip that has an end part that is pressed to an electrode and is covered by a electrically conductive outer enclosure, and slides in a vertical direction by an inner surface of this electrically conductive outer enclosure inside this electrically conductive outer enclosure. A signal conductive pattern is fixed inside this probe chip and is connected with a inner conductor having elasticity. The inner conductor can be bent in the vertical direction at a central part of a hole having an opening, which is sufficiently long in the vertical direction, in the center space of a ground conductor, which is fixed to an end part of the main block, when the inner conductor is pressed due to contact of the end part. In addition, the high-frequency probe has a thin shape of a maximum thickness in a transverse direction which is perpendicular to the vertical direction that is a direction of the probe being pressed to a device electrode. The maximum thickness is substantially equal to a pitch between device electrodes, and can be formed in the construction of unifying a plurality of high-frequency probes.
摘要:
A process for manufacturing a high frequency multichip module includes a reception inspection step which includes steps of preparing a vertical-type probe, setting the high frequency bare chip on a device stage, and measuring high frequency characteristics of the high frequency bare chip using the vertical-type probe. The prepared vertical-type probe has a center conductor and ground conductors arranged at both sides of the tip portion of the center conductor in the vertical direction in which the probe is pressed to electrodes of the high frequency bare chip. The high frequency bare chip has a ground electrode disposed at the opposite side of the chip from the signal electrodes on the upper surface of a device stage. Then, only a good product is fed to the next step. After the reception inspection, the process goes to a component mounting step. Preferably, the process goes to the next step when the high frequency multichip modules passes at least on of a performance test and visual inspection after the component mounting step.
摘要:
In a tip portion structure basically having a substrate, a plate spring, and a ground block, the substrate is attached to a signal line on a back surface of the substrate and is contacted on the tip with the signal electrode of the DUT placed on a device stage. The plate spring is made of a resilient material, placed on the front side of the substrate, and positioned to apply a pressure to the substrate. The ground block is positioned between the signal line and the device stage functioned as a ground electrode of the DUT. Alternatively, the tip portion structure further may have a ground plate or a ground surface formed of a conductive thin plate covering entirely the front surface of the substrate, and shaped to surround the signal line in cooperation with the ground block. A plurality of the signal lines may be arranged in parallel on the same plane of the substrate. Another tip portion structure is based on a coaxial cable to be cut from the center at a plane perpendicular to the axial direction thereof along one or more oblique plane. A metal ring fitted over a periphery of the coaxial outer conductor may be used.
摘要:
In a tip portion structure basically having a substrate, a plate spring, and a ground block, the substrate is attached to a signal line on a back surface of the substrate and is contacted on the tip with the signal electrode of the DUT placed on a device stage. The plate spring is made of a resilient material, placed on the front side of the substrate, and positioned to apply a pressure to the substrate. The ground block is positioned between the signal line and the device stage functioned as a ground electrode of the DUT. Alternatively, the tip portion structure further may have a ground plate or a ground surface formed of a conductive thin plate covering entirely the front surface of the substrate, and shaped to surround the signal line in cooperation with the ground block . A plurality of the signal lines may be arranged in parallel on the same plane of the substrate. Another tip portion structure is based on a coaxial cable to be cut from the center at a plane perpendicular to the axial direction thereof along one or more oblique plane. A metal ring fitted over a periphery of the coaxial outer conductor may be used.