摘要:
Charge-discharge cycle performance is improved in a lithium secondary battery that uses a material that occludes lithium by alloying with lithium as its negative electrode active material. A lithium secondary battery comprises a negative electrode having a negative electrode active material thin film provided on a negative electrode current collector, a positive electrode including a positive electrode active material, and a non-aqueous electrolyte, in which the negative electrode active material is a material that occludes lithium by alloying with lithium, the ratio of the discharge capacity per unit area of the negative electrode to the discharge capacity per unit area of the positive electrode is from 1.5 to 3, and the ratio of the thickness (μm) of the negative electrode active material to the arithmetical mean roughness Ra (μm) of the surface of the negative electrode current collector is 50 or less.
摘要:
A rechargeable lithium battery including a negative electrode made by depositing a noncrystalline thin film composed entirely or mainly of silicon on a current collector, a positive electrode and a nonaqueous electrolyte, characterized in that said nonaqueous electrolyte contains carbon dioxide dissolved therein.
摘要:
A rechargeable lithium battery including a negative electrode made by depositing a noncrystalline thin film composed entirely or mainly of silicon on a current collector, a positive electrode and a nonaqueous electrolyte, characterized in that said nonaqueous electrolyte contains carbon dioxide dissolved therein.
摘要:
A nonaqueous electrolyte secondary battery in which the decomposition of an electrolyte solution is reduced exhibits high coulombic efficiency and excellent charge and discharge cycle performance, and has high energy density. This nonaqueous electrolyte secondary battery includes a negative electrode that is formed by depositing a thin film of active material on a collector by a CVD method, sputtering, evaporation, thermal spraying, or plating, wherein the thin film of the active material can lithiate and delithiate and is divided into columns by cracks formed in the thickness direction, and the bottom of each column is adhered to the collector; a positive electrode that can lithiate and delithiate; and a nonaqueous electrolyte solution containing a lithium salt in a nonaqueous solvent. The electrolyte solution contains a compound expressed by a general formula (I). Rn-M=0 (I) (wherein, Rs are alkyl groups optionally having a substituent, may be identical or different from one another, may be independent substituents, or may be bound together to form a ring; M is S or P; and n is 2 when M is S and is 3 when M is P).
摘要:
A lithium secondary battery includes a negative electrode, a positive electrode, and a non-aqueous electrolyte. The negative electrode includes a negative electrode current collector (3b) having an irregular surface and a negative electrode active material layer (3a) formed on the surface. In the lithium secondary battery, the negative electrode active material layer (3a) is composed of a material that alloys with Li; thickness of the negative electrode active material layer (3a) (μm)/10-point mean surface roughness Rz of the negative electrode current collector (3b) (μm) is in the range of from 0.5 to 4; and tensile strength of the negative electrode current collector (3b) (N/mm2) at 25° C.×the negative electrode current collector base thickness (mm)/thickness of the negative electrode active material layer (3a) (μm) on one side of current collector is 2 or greater.
摘要:
A nonaqueous electrolyte secondary battery in which the decomposition of an electrolyte solution is reduced exhibits high coulombic efficiency and excellent charge and discharge cycle performance, and has high energy density. This nonaqueous electrolyte secondary battery includes a negative electrode that is formed by depositing a thin film of active material on a collector by a CVD method, sputtering, evaporation, thermal spraying, or plating, wherein the thin film of the active material can lithiate and delithiate and is divided into columns by cracks formed in the thickness direction, and the bottom of each column is adhered to the collector; a positive electrode that can lithiate and delithiate; and a nonaqueous electrolyte solution containing a lithium salt in a nonaqueous solvent. The electrolyte solution contains a compound expressed by a general formula (I). (wherein, R1, and R2, R3 are hydrogen atoms or alkyl groups each optionally having a substituent, may be identical or different from one another, may be independent substituents, or may be bound together to form a ring)
摘要:
A nonaqueous electrolyte secondary battery in which the decomposition of an electrolyte solution is reduced exhibits high coulombic efficiency and excellent charge and discharge cycle performance, and has high energy density. This nonaqueous electrolyte secondary battery includes a negative electrode that is formed by depositing a thin film of active material on a collector by a CVD method, sputtering, evaporation, thermal spraying, or plating, wherein the thin film of the active material can lithiate and delithiate and is divided into columns by cracks formed in the thickness direction, and the bottom of each column is adhered to the collector; a positive electrode that can lithiate and delithiate; and a nonaqueous electrolyte solution containing a lithium salt in a nonaqueous solvent. The electrolyte solution contains a compound expressed by a general formula (I). (wherein, X represents a perfluoroalkyl group having 1 to 3 fluorine atoms or carbon atoms, and 2n Xs may be identical or different from one another. n is an integer of 1 or more.)
摘要:
A nonaqueous electrolyte secondary battery in which the decomposition of an electrolyte solution is reduced exhibits high coulombic efficiency and excellent charge and discharge cycle performance, and has high energy density. This nonaqueous electrolyte secondary battery includes a negative electrode that is formed by depositing a thin film of active material on a collector by a CVD method, sputtering, evaporation, thermal spraying, or plating, wherein the thin film of the active material can lithiate and delithiate and is divided into columns by cracks formed in the thickness direction, and the bottom of each column is adhered to the collector; a positive electrode that can lithiate and delithiate; and a nonaqueous electrolyte solution containing a lithium salt in a nonaqueous solvent. The electrolyte solution contains a compound expressed by a general formula (I). (wherein, R1, R2, and R3 are hydrogen atoms or alkyl groups each optionally having a substituent, may be identical or different from one another, may be independent substituents, or may be bound together to form a ring)
摘要:
A nonaqueous electrolyte secondary battery in which the decomposition of an electrolyte solution is reduced exhibits high coulombic efficiency and excellent charge and discharge cycle performance, and has high energy density. This nonaqueous electrolyte secondary battery includes a negative electrode that is formed by depositing a thin film of active material on a collector by a CVD method, sputtering, evaporation, thermal spraying, or plating, wherein the thin film of the active material can lithiate and delithiate and is divided into columns by cracks formed in the thickness direction, and the bottom of each column is adhered to the collector; a positive electrode that can lithiate and delithiate; and a nonaqueous electrolyte solution containing a lithium salt in a nonaqueous solvent. The electrolyte solution contains a compound expressed by a general formula (I). Rn-M=0 (I) (wherein, Rs are alkyl groups optionally having a substituent, may be identical or different from one another, may be independent substituents, or may be bound together to form a ring; M is S or P; and n is 2 when M is S and is 3 when M is P.)
摘要:
Provided is a lithium secondary battery in which negative-electrode active material particles containing silicon and/or a silicon alloy are used and which prevents the occurrence of breakage of a binder itself and peel-off of the binder at the interfaces with the negative-electrode active material and the negative-electrode current collector and has a high energy density and an excellent cycle characteristic. The lithium secondary battery includes: a negative electrode in which a negative-electrode active material layer including negative-electrode active material particles containing silicon and/or a silicon alloy and a binder is formed on a surface of electrically conductive metal foil serving as a negative-electrode current collector; a positive electrode; and a nonaqueous electrolyte, wherein the binder contains a polyimide resin including a crosslinked structure formed by imidization of a hexavalent or higher-valent carboxylic acid or an anhydride thereof with a diamine.