摘要:
A lithium secondary battery having high capacity and good charge-discharge cycle performance is provided. The lithium secondary battery includes a negative electrode (2) containing silicon as a negative electrode active material, a positive electrode (1) containing a positive electrode active material, and a non-aqueous electrolyte. The positive electrode active material is a lithium-transition metal composite oxide including a layered structure represented by the chemical formula LiaNixMnyCozO2, where a, x, y, and z satisfy the expressions: 0≦a≦1.3, x+y+z=1, 0
摘要翻译:提供具有高容量和良好的充放电循环性能的锂二次电池。 锂二次电池包括含有硅作为负极活性物质的负极(2),含有正极活性物质的正极(1)和非水电解质。 正极活性物质是包含由化学式LiaNixMnyCozO2表示的层状结构的锂 - 过渡金属复合氧化物,其中a,x,y和z满足以下表达式:0≦̸ a≦̸ 1.3,x + y + z = 1 ,0
摘要:
Charge-discharge cycle performance is improved in a lithium secondary battery that adopts a thin film made of silicon or a silicon alloy as its negative electrode active material and has a wound electrode structure. The lithium secondary battery includes: a negative electrode having a current collector and a thin film made of silicon or a silicon alloy as a negative electrode active material, the thin film provided on the current collector; a positive electrode; a separator; the positive and negative electrodes being overlapped with the separator interposed therebetween, and the positive and negative electrodes and the separator being wound around to form an electrode assembly; a non-aqueous electrolyte; and a battery case accommodating the electrode assembly. The ratio of charge capacity per unit area of the negative electrode to theoretical capacity per unit area of the positive electrode is within the range of from 1.9 to 4.4.
摘要:
Charge-discharge cycle performance is improved in a lithium secondary battery that adopts a thin film made of silicon or a silicon alloy as its negative electrode active material and has a wound electrode structure. The lithium secondary battery includes: a negative electrode having a current collector and a thin film made of silicon or a silicon alloy as a negative electrode active material, the thin film provided on the current collector; a positive electrode; a separator; the positive and negative electrodes being overlapped with the separator interposed therebetween, and the positive and negative electrodes and the separator being wound around to form an electrode assembly; a non-aqueous electrolyte; and a battery case accommodating the electrode assembly. The ratio of theoretical capacity per unit area of the negative electrode to charge capacity per unit area of the positive electrode is within the range of from 1.9 to 4.4.
摘要:
A lithium secondary battery having high capacity and good charge-discharge cycle performance is provided. The lithium secondary battery includes a negative electrode (2) containing silicon as a negative electrode active material, a positive electrode (1) containing a positive electrode active material, and a non-aqueous electrolyte. The positive electrode active material is a lithium-transition metal composite oxide including a layered structure represented by the chemical formula LiaNixMnyCOzO2, where a, x, y, and z satisfy the expressions: 0≦a≦1.3, x+y+z=1, 0
摘要翻译:提供具有高容量和良好的充放电循环性能的锂二次电池。 锂二次电池包括含有硅作为负极活性物质的负极(2),含有正极活性物质的正极(1)和非水电解质。 正极活性物质是包含由化学式为Li x Mn x Mn y CO的化学式表示的层状结构的锂 - 过渡金属复合氧化物 其中a,x,y和z满足以下表达式:0 <= a <= 1.3,x + y + z = 1,0
摘要:
A lithium secondary battery is provided capable of significantly improving charge-discharge cycle performance by preventing gas generation originating from decomposition of the non-aqueous electrolyte while preventing manufacturing cost from increasing. A lithium secondary battery is provided with: a power generating element accommodated in a flexible battery case (6), the power generating element including a negative electrode (2), a positive electrode (1), and a non-aqueous electrolyte. The negative electrode contains negative electrode active material particles composed of silicon and/or a silicon alloy. The positive electrode contains a positive electrode active material composed of a lithium-transition metal composite oxide. The non-aqueous electrolyte contains ions of at least one element selected from the group consisting of Co, Cu, Mg, Mn, Ni, Fe, and Zr.
摘要:
Provided is a nonaqueous electrolyte secondary battery which, even in the case of using a low-viscosity solvent having a narrow potential window, can increase the electrochemical stability of the nonaqueous electrolyte solution and suppress side reactions of the nonaqueous electrolyte solution during charge and discharge to reduce the degradation of the battery characteristics and has an excellent storage characteristic in high-temperature environments and a nonaqueous electrolyte solution for the nonaqueous electrolyte secondary battery. The nonaqueous electrolyte secondary battery includes: a positive electrode containing a positive-electrode active material; a negative electrode containing a negative-electrode active material; and a nonaqueous electrolyte solution containing a solute dissolved in a nonaqueous solvent, wherein the nonaqueous electrolyte solution further contains benzotrifluoride and a diisocyanate compound and the content of benzotrifluoride is 5% by volume or more in the nonaqueous electrolyte solution except the solute.
摘要:
A lithium secondary battery has a wound electrode assembly (5). The wound electrode assembly (5) has a negative electrode (2) having a negative electrode active material layer containing a negative electrode active material capable of alloying with lithium and having a filling density of 2.0 g/cc or less, a positive electrode (1) having a positive electrode active material layer containing a positive electrode active material made of a transition metal composite oxide, a separator (3) disposed between the positive and negative electrodes and having a penetration resistance of 500 g or greater, and a cylindrical hollow space (14) at a winding axis and in the vicinity thereof, wherein the positive electrode (1), the negative electrode (2), and the separator (3) are spirally wound. A columnar center pin (15) having a diameter of from 75% to 95% of the diameter of the hollow space is disposed in the hollow space.
摘要:
A non-aqueous electrolyte secondary battery includes a positive electrode (1), a negative electrode (2) containing a negative electrode active material, a separator 3 interposed between the electrodes (1) and (2), and a non-aqueous electrolyte containing a non-aqueous solvent and a solute dissolved in the solvent. The non-aqueous electrolyte contains a compound represented by the following chemical formula (1): wherein n is an integer of from 2 to 6, each R represents a linear saturated hydrocarbon that may be an unsubstituted or may have a substituted group, and the Rs may be the same or different groups.
摘要:
A negative electrode (2) for a lithium secondary battery having a negative electrode current collector (21) having an arithmetical mean surface roughness Ra of 0.01 μm or greater and a negative electrode active material layer (22) formed on the negative electrode current collector (21). The negative electrode active material layer (22) contains a negative electrode active material (22a) including a material capable of alloying with lithium. A conductive layer (23) including a material not intercalating or deintercalating lithium is formed on the negative electrode active material layer.
摘要:
Provided is a nonaqueous electrolyte secondary battery which, even in the case of using a low-viscosity solvent having a narrow potential window, can increase the electrochemical stability of the nonaqueous electrolyte solution and suppress side reactions of the nonaqueous electrolyte solution during charge and discharge to reduce the degradation of the battery characteristics and has an excellent storage characteristic in high-temperature environments and a nonaqueous electrolyte solution for the nonaqueous electrolyte secondary battery. The nonaqueous electrolyte secondary battery includes: a positive electrode containing a positive-electrode active material; a negative electrode containing a negative-electrode active material; and a nonaqueous electrolyte solution containing a solute dissolved in a nonaqueous solvent, wherein the nonaqueous electrolyte solution further contains benzotrifluoride and a diisocyanate compound and the content of benzotrifluoride is 5% by volume or more in the nonaqueous electrolyte solution except the solute.