摘要:
An optical pick-up device for focusing a laser beam emitted from a light emitting element through an optical system onto a recording medium. The beam is reflected from the recording medium and redirected through the same optical system on to a photodetector. A tracking error signal and a focusing error signal are produced from the output signals of the photo-detector. A diffracting element positioned before the light emitting element and the photo-detector and produces two sub-spots in two directions for applying the so-called 3-spots method from the laser beams that were projected from the light emitting element toward the recording medium. The diffracting element is divided into a first sub-region and a second sub-region formed in the same place and defined by a parting line aligned substantially perpendicular to the track direction. The first sub-region includes a diffraction grating for diffracting three beams that comprise a main beam toward the recording medium. The second sub-region includes a diffraction grating for diffracting the reflected beams of the three beams from the recording medium in the direction where the photo-detecting element is installed.
摘要:
An optical pickup device includes a light source, an optical lens system that converges light beams from the light source onto a recording medium, a photodetector with three divided regions that detects light beams reflected from the recording medium, and a hologram optical element that introduces the reflected light beams from the recording medium into the photodetector. The hologram optical element is divided into two regions, a part of the reflected light beams from the recording medium is diffracted by the first region of the hologram optical element and focused on a division line in the direction of the diffraction of the hologram optical element. The division line divides the photodetector into two regions, the first region and the second region. The other part of the reflected light beams is diffracted by the second region of the hologram optical element and focused on the third region of the photodetector. A difference in the output intensity between the first and second regions of the photodetector results in a focus error signal and the total of the output intensity of the first, second and third regions of the photodetector results in an information signal.
摘要:
An optical pickup device in which a main beam and a pair of sub-beams are used and a diffraction device is disposed between a recording medium and a light receiving device such as a photodetector is disclosed. The diffraction device comprises first to third diffraction regions. The second and third regions receive light beams from the recording medium which are substantially identical in amount to each other. The light receiving device comprises a first to a fourth light receiving regions. The first and second light receiving regions are juxtaposed, and separated by a line. The main beam which has been diffracted by the first diffraction region is focused onto said line. The main beam which has been diffracted by the second diffraction region is focused onto the first light receiving region. The main beam which has been diffracted by the third diffracting region is focused onto the second light receiving region. The sub-beams which have been diffracted by the diffraction device are focused onto the third and fourth light receiving regions, respectively. Alternatively, the diffraction device comprises an area where one or more diffraction regions are formed. The farthest point of the area at the side of the light receiving device is separated from the optical axis by a predetermined distance, to prevent the first order diffracted beam from entering the optical system disposed between the diffraction device and a recording medium.
摘要:
An optical pickup apparatus for reproducing information from an optical recording medium such as a compact disc comprising: a laser device; one or more diffraction devices; and a photodetector receiving a laser beam diffracted by the diffraction device. The surfaces of the diffraction device are provided with an antireflection coating. When the apparatus is used for the three-beam method, the two photodetecting areas in the photodetector for producing the tracking error signal are different in size and in positional relation to the laser device.
摘要:
An optical pickup device in which a main beam and a pair of sub-beams are used and a diffraction device is disposed between a recording medium and a light receiving device such as a photodetector is disclosed. The diffraction device comprises first to third diffraction regions. The second and third regions receive light beams from the recording medium which are substantially identical in amount to each other. The light receiving device comprises a first to a fourth light receiving regions. The first and second light receiving regions are juxtaposed, and separated by a line. The main beam which has been diffracted by the first diffraction region is focused onto said line. The main beam which has been diffracted by the second diffraction region is focused onto the first light receiving region. The main beam which has been diffracted by the third diffracting region is focused onto the second light receiving region. The sub-beams which have been diffracted by the diffraction device are focused onto the third and fourth light receiving regions, respectively. Alternatively, the diffraction device comprises an area where one or more diffraction regions are formed. The farthest point of the area at the side of the light receiving device is separated from the optical axis by a predetermined distance, to prevent the first order diffracted beam from entering the optical system disposed between the diffraction device and a recording medium.
摘要:
A display apparatus of the invention includes: a plurality of display devices arranged in one direction, each of the plurality of display devices having a display area; and a plurality of image transmission means corresponding to the respective display devices, one end face of each of the image transmission means being coupled to a display area of the corresponding one of the display devices, other end faces of the image transmission means corresponding to the adjacent ones of the display devices being in contact with each other, the plurality of image transmission means being bent toward the one direction in which the display devices are arranged. Alternatively, a display apparatus of the invention includes: a plurality of display devices disposed in two directions, each of the plurality of display devices having a display area; a plurality of image transmission means corresponding to the respective display devices, one end face of each of the image transmission means being coupled to a display area of the corresponding one of the display devices, other end faces of the image transmission means corresponding to the adjacent ones of the display devices being in contact with each other, some of the plurality of image transmission means each having inward facing slopes and outward facing slopes on two pairs of opposing faces, the outward facing slopes of the image transmission means being directed to a direction in which the corresponding display device has no adjacent display devices.
摘要:
An optical information reproducing apparatus of the invention includes a light emitting and receiving unit and an optical system. The optical system converges light from the light emitting and receiving unit on a recording medium and converges the light after reflected by the recording medium. The light emitting and receiving unit includes: a semiconductor laser device disposed on a substrate for generating light; a photo detector formed, integrally with the substrate, on the substrate on which the semiconductor laser device is disposed, for outputting a signal corresponding to the intensity of light incident thereon; and a beam splitter provided on an optical axis of the reflected light, the beam splitter leading part of the reflected light to the photo detector.
摘要:
An optical information recording and reproducing device is provided. The device includes a light source for emitting a light beam, a first diffraction element for splitting the light beam into at least three diffracted beams, an optical system guiding the diffracted beams to a recording medium, and a second diffraction element including at least one division line and a diffraction surface from which the diffracted beams are diffracted. The diffraction surface is divided into at least two regions by the division line or lines. One of the division lines is at a predetermined angle against the direction of a track on the recording medium, and the regions split each of the diffracted beams into at least two parts to diffract the parts in different directions. The device also includes an optical detecting element for detecting the light beams diffracted with the second diffraction element.
摘要:
An optical device includes: a first dielectric slab waveguide having an effective refractive index N.sub.1 ; a second dielectric slab waveguide having an effective refractive index N.sub.2 ; and a third dielectric slab waveguide having a length 1 and an effective refractive index N.sub.3, the third dielectric slab waveguide being formed between the first dielectric slab waveguide and the second dielectric slab waveguide so as to connect the first dielectric slab waveguide with the second dielectric slab waveguides optically; wherein the length I and the effective refractive index N.sub.3 substantially satisfy following equations; ##EQU1## where .lambda. is a free-space wavelength of light traveling in the optical device and the light travels from the first dielectric slab waveguide to the third dielectric slab waveguide at an incident angle .THETA. in a single mode.
摘要:
An optical diffraction grating element comprising diffraction gratings having a configuration in which grooves and flat lands each positioned between the adjacent grooves are successively alternately formed, wherein the diffraction gratings have the same groove depth, groove width and groove tilt angle in order to obtain a constant 0th-order diffraction efficiency and first-order diffraction efficiency in the optical diffraction grating element while the pitches of the diffraction gratings are made different by setting a different land width for each diffraction grating.