摘要:
A position, behavior state and movement state of a moving object are detected, together with plural categories of track segment region and stationary object regions, using an environment detection section. A presence probability is applied to the detected track segment regions and stationary object regions and a presence probability map is generated, using a map generation section. A moving object position distribution and movement state distribution are generated by a moving object generation section based on the detected moving object position, behavior state and movement state, and recorded on the presence probability map. The moving object position distribution is moved by a position update section based on the moving object movement state distribution. The moved position distribution is changed by a distribution change section based on the presence probabilities of the presence probability map, and a future position distribution of the moving object is predicted on the presence probability map. Consequently, the future position of the moving object can be predicted with good precision under various conditions.
摘要:
A position, behavior state and movement state of a moving object are detected, together with plural categories of track segment region and stationary object regions, using an environment detection section. A presence probability is applied to the detected track segment regions and stationary object regions and a presence probability map is generated, using a map generation section. A moving object position distribution and movement state distribution are generated by a moving object generation section based on the detected moving object position, behavior state and movement state, and recorded on the presence probability map. The moving object position distribution is moved by a position update section based on the moving object movement state distribution. The moved position distribution is changed by a distribution change section based on the presence probabilities of the presence probability map, and a future position distribution of the moving object is predicted on the presence probability map. Consequently, the future position of the moving object can be predicted with good precision under various conditions.
摘要:
In a driving support system, a target speed profile computing unit determines a target speed on the basis of a safe-condition confirmation end point that is set to a predetermined position in a travel direction of a host vehicle. The safe-condition confirmation end point is a point at which the host vehicle passes through a section following the safe-condition confirmation end point in advance of a moving object that appears from blind areas. In this way, by determining the target speed based on the safe-condition confirmation end point, the drive support control unit is able to support driving in consideration of driving action at the time when the driver actually causes the host vehicle to pass through near the blind areas. Thus, it is possible to appropriately support driving along a feeling of the driver such that inconvenience and a feeling of strangeness are reduced.
摘要:
An environmental movement detection section detects the speed of a vehicle and detects a mobile object in the vicinity of the vehicle. A collision probability prediction section predicts the probability of a prospective collision between the vehicle and the detected vicinity mobile object. On the basis of approach speeds, collision probabilities and sideward passing speeds when passing other mobile objects to sideward that have been determined from standard movements, a movement standard learning section learns relationships between approach speed, collision probability and sideward passing speed. On the basis of learning results at the movement standard learning section, a path characteristic point generation section determines a standard sideward passing speed for when passing the vicinity mobile object to sideward that corresponds with the detected approach speed and the predicted collision probability. Thus, standard mobile object states may be determined efficiently.
摘要:
In a driving support system, a target speed profile computing unit determines a target speed on the basis of a safe-condition confirmation end point that is set to a predetermined position in a travel direction of a host vehicle. The safe-condition confirmation end point is a point at which the host vehicle passes through a section following the safe-condition confirmation end point in advance of a moving object that appears from blind areas. In this way, by determining the target speed based on the safe-condition confirmation end point, the drive support control unit is able to support driving in consideration of driving action at the time when the driver actually causes the host vehicle to pass through near the blind areas. Thus, it is possible to appropriately support driving along a feeling of the driver such that inconvenience and a feeling of strangeness are reduced.
摘要:
An environmental movement detection section detects the speed of a vehicle and detects a mobile object in the vicinity of the vehicle. A collision probability prediction section predicts the probability of a prospective collision between the vehicle and the detected vicinity mobile object. On the basis of approach speeds, collision probabilities and sideward passing speeds when passing other mobile objects to sideward that have been determined from standard movements, a movement standard learning section learns relationships between approach speed, collision probability and sideward passing speed. On the basis of learning results at the movement standard learning section, a path characteristic point generation section determines a standard sideward passing speed for when passing the vicinity mobile object to sideward that corresponds with the detected approach speed and the predicted collision probability. Thus, standard mobile object states may be determined efficiently.