摘要:
When a backlight 15 is turned on in a dark environment, white light emerging from the surface of a light guide plate 15b passes through a polarizer 12 and a retardation film 14, enters the interior of the liquid crystal cell, passes through openings of reflective electrodes 7, and is introduced into a liquid crystal layer 3. The light introduced into the liquid crystal layer 3 passes through a color filter 5, emerges from the liquid crystal cell, and passes through the retardation film 13 and the polarizer 11 towards the exterior. In a lighted environment, the light incident on the polarizer 11 passes through the liquid crystal layer 3, is reflected by the reflective electrode 7, and passes through the polarizer 11 again and is emitted towards the exterior.
摘要:
The invention provides a reflection type liquid crystal device, and a projection type display and electronic equipment in which display defects caused by disclination are reduced, minimized or prevented from being produced for a highly fine liquid crystal display with a space between pixels made to be narrow to make it possible to provide a high-contrast and bright display. A liquid crystal device includes a liquid crystal layer sandwiched between a first substrate and a second substrate, and a first electrode and a second electrode formed on a face of the above-described second substrate on a side of the above-described liquid crystal layer. The above-described first electrode and the above-described second electrode are formed so that an electric field substantially parallel to the surface of the substrate with respect to the above-described liquid crystal layer can be applied thereto. The above-described first electrode is formed in a linear shape having a specified line width on the above-described second electrode with a second insulation film interposed therebetween. The above-described second electrode is formed in a rectangular shape, and at least one of the above-described first electrode and the above-described second electrode is a reflecting electrode that causes incident light coming from a direction of the above-described first substrate.
摘要:
Ambient light incident upon a polarizer 105 passes through a liquid crystal layer 103 and is then reflected by reflective films 116 via transparent electrodes 115. The reflected light passes again through the liquid crystal layer 103 and the polarizer 105 and is output to the outside thereby displaying an image in a reflective displaying mode. The reflective films 116 are disposed at locations corresponding to the respective transparent electrodes 115 such that they are spaced from each other. In this structure, some ambient light passes through the spaces between adjacent transparent electrodes 115, however, such light is not reflected by the reflective films 116 toward the outside and thus a reduction in contrast due to such reflection is prevented.
摘要:
Ambient light incident upon a polarizer 105 passes through a liquid crystal layer 103 and is then reflected by reflective films 116 via transparent electrodes 115. The reflected light passes again through the liquid crystal layer 103 and the polarizer 105 and is output to the outside thereby displaying an image in a reflective displaying mode. The reflective films 116 are disposed at locations corresponding to the respective transparent electrodes 115 such that they are spaced from each other. In this structure, some ambient light passes through the spaces between adjacent transparent electrodes 115, however, such light is not reflected by the reflective films 116 toward the outside and thus a reduction in contrast due to such reflection is prevented.
摘要:
The invention provides a reflection type liquid crystal device, and a projection type display and electronic equipment in which display defects caused by disclination are reduced, minimized or prevented from being produced for a highly fine liquid crystal display with a space between pixels made to be narrow to make it possible to provide a high-contrast and bright display. A liquid crystal device includes a liquid crystal layer sandwiched between a first substrate and a second substrate, and a first electrode and a second electrode formed on a face of the above-described second substrate on a side of the above-described liquid crystal layer. The above-described first electrode and the above-described second electrode are formed so that an electric field substantially parallel to the surface of the substrate with respect to the above-described liquid crystal layer can be applied thereto. The above-described first electrode is formed in a linear shape having a specified line width on the above-described second electrode with a second insulation film interposed therebetween. The above-described second electrode is formed in a rectangular shape, and at least one of the above-described first electrode and the above-described second electrode is a reflecting electrode that causes incident light coming from a direction of the above-described first substrate.
摘要:
The invention provides a reflection type liquid crystal device, and a projection type display and electronic equipment in which display defects caused by disclination are reduced, minimized or prevented from being produced for a highly fine liquid crystal display with a space between pixels made to be narrow to make it possible to provide a high-contrast and bright display. A liquid crystal device includes a liquid crystal layer sandwiched between a first substrate and a second substrate, and a first electrode and a second electrode formed on a face of the above-described second substrate on a side of the above-described liquid crystal layer. The above-described first electrode and the above-described second electrode are formed so that an electric field substantially parallel to the surface of the substrate with respect to the above-described liquid crystal layer can be applied thereto. The above-described first electrode is formed in a linear shape having a specified line width on the above-described second electrode with a second insulation film interposed therebetween. The above-described second electrode is formed in a rectangular shape, and at least one of the above-described first electrode and the above-described second electrode is a reflecting electrode that causes incident light coming from a direction of the above-described first substrate.
摘要:
The invention provides a reflection type liquid crystal device, and a projection type display and electronic equipment in which display defects caused by disclination are reduced, minimized or prevented from being produced for a highly fine liquid crystal display with a space between pixels made to be narrow to make it possible to provide a high-contrast and bright display. A liquid crystal device includes a liquid crystal layer sandwiched between a first substrate and a second substrate, and a first electrode and a second electrode formed on a face of the above-described second substrate on a side of the above-described liquid crystal layer. The above-described first electrode and the above-described second electrode are formed so that an electric field substantially parallel to the surface of the substrate with respect to the above-described liquid crystal layer can be applied thereto. The above-described first electrode is formed in a linear shape having a specified line width on the above-described second electrode with a second insulation film interposed therebetween. The above-described second electrode is formed in a rectangular shape, and at least one of the above-described first electrode and the above-described second electrode is a reflecting electrode that causes incident light coming from a direction of the above-described first substrate.
摘要:
When a backlight 15 is turned on in a dark environment, white light emerging from the surface of a light guide plate 15b passes through a polarizer 12 and a retardation film 14, enters the interior of the liquid crystal cell, passes through openings of reflective electrodes 7, and is introduced into a liquid crystal layer 3. The light introduced into the liquid crystal layer 3 passes through a color filter 5, emerges from the liquid crystal cell, and passes through the retardation film 13 and the polarizer 11 towards the exterior. In a lighted environment, the light incident on the polarizer 11 passes through the liquid crystal layer 3, is reflected by the reflective electrode 7, and passes through the polarizer 11 again and is emitted towards the exterior.
摘要:
The invention provides a reflection type liquid crystal device, and a projection type display and electronic equipment in which display defects caused by disclination are reduced, minimized or prevented from being produced for a highly fine liquid crystal display with a space between pixels made to be narrow to make it possible to provide a high-contrast and bright display. A liquid crystal device includes a liquid crystal layer sandwiched between a first substrate and a second substrate, and a first electrode and a second electrode formed on a face of the above-described second substrate on a side of the above-described liquid crystal layer. The above-described first electrode and the above-described second electrode are formed so that an electric field substantially parallel to the surface of the substrate with respect to the above-described liquid crystal layer can be applied thereto. The above-described first electrode is formed in a linear shape having a specified line width on the above-described second electrode with a second insulation film interposed therebetween. The above-described second electrode is formed in a rectangular shape, and at least one of the above-described first electrode and the above-described second electrode is a reflecting electrode that causes incident light coming from a direction of the above-described first substrate.
摘要:
When a backlight 15 is turned on in a dark environment, white light emerging from the surface of a light guide plate 15b passes through a polarizer 12 and a retardation film 14, enters the interior of the liquid crystal cell, passes through openings of reflective electrodes 7, and is introduced into a liquid crystal layer 3. The light introduced into the liquid crystal layer 3 passes through a color filter 5, emerges from the liquid crystal cell, and passes through the retardation film 13 and the polarizer 11 towards the exterior. In a lighted environment, the light incident on the polarizer 11 passes through the liquid crystal layer 3, is reflected by the reflective electrode 7, and passes through the polarizer 11 again and is emitted towards the exterior.