Abstract:
An opto-electric (OE) module having a front and back orientation and comprising a connector having a front end configured to mate with a connector, an optical interconnect comprising an optical conduit with first and second ends, the first end being terminated by at least one first ferrule, the first ferrule being disposed in the connector in a non-biased state, and the second end being optically coupled to at least one opto-electric device (OED), wherein the optical interconnect is not configured to bend to accommodate distance variations between said first ferrule and said OED, a cover being attached to the connector and having an interior, a circuit board disposed in the interior and having an electrical interface configured to connect to a daughter card, and the opto-electric device (OED) attached to the circuit board and optically connected to the second end.
Abstract:
A connector includes a shell and a coupling mechanism rotatable about the shell. The coupling mechanism includes inner and outer coupling nuts. The inner coupling nut has threads configured to be threadably coupled to a mating connector. The outer coupling nut is configured to be locked to the inner coupling nut to transfer rotation of the outer coupling nut to the inner coupling nut. The outer coupling nut is configured to be unlocked from the inner coupling nut to allow free rotation of the outer coupling nut relative to the inner coupling nut. The outer coupling nut is automatically unlocked when the connector is fully mated to the mating connector. The coupling mechanism may include a plunger movable between a locked position and an unlocked position with the plunger locking the outer coupling nut to the inner coupling nut in the locked position.
Abstract:
A connector includes a shell and a coupling mechanism rotatably coupled thereto. The coupling mechanism includes an inner coupling nut and an outer coupling nut separate from the inner coupling nut. The inner coupling nut has internal threads configured to be threadably coupled to a mating connector. The inner coupling nut has a plurality of ramped steps disposed at different circumferential positions along the rear. The outer coupling nut has a detent successively engaging the ramped steps as the outer coupling nut is rotated in a tightening direction. The detent is released from the corresponding ramped step when the connector is fully mated to the mating connector. The detent engages a corresponding ramped step as the outer coupling nut is rotated in an untightening direction causing the inner coupling nut to rotate in the untightening direction.
Abstract:
An opto-electric (OE) module having a front and back orientation and comprising a connector having a front end configured to mate with a connector, an optical interconnect comprising an optical conduit with first and second ends, the first end being terminated by at least one first ferrule, the first ferrule being disposed in the connector in a non-biased state, and the second end being optically coupled to at least one opto-electric device (OED), wherein the optical interconnect is not configured to bend to accommodate distance variations between said first ferrule and said OED, a cover being attached to the connector and having an interior, a circuit board disposed in the interior and having an electrical interface configured to connect to a daughter card, and the opto-electric device (OED) attached to the circuit board and optically connected to the second end.
Abstract:
An optical cable assembly includes an optical cable having an end. The optical cable includes a plastic optical fiber (POF) having a tip segment that includes a tip surface. The optical cable assembly also includes a socket terminus assembly that terminates the end of the optical cable and is configured to mate with a pin terminus assembly. The socket terminus assembly includes a terminus body having a cable passage. At least a portion of the end of the optical cable extends within the cable passage such that the tip surface of the tip segment of the POF is configured to engage a mating POF of the pin terminus assembly to optically couple the POF to the mating POF.
Abstract:
An optical cable assembly includes an optical cable having an end that extends a length. The optical cable includes a plastic optical fiber (POF) and a buffer surrounding the POF along a portion of the length of the end of the optical cable. A terminus assembly terminates the end of the optical cable. The terminus assembly includes a terminus body having a cable passage and a crimp zone. At least a portion of the length of the end of the optical cable extends within the cable passage of the terminus body such that the terminus body surrounds the buffer of the optical cable at the crimp zone. The terminus body is mechanically crimped over, in engagement with, the buffer of the optical cable at the crimp zone.
Abstract:
An optical cable assembly includes an optical cable having an end. The optical cable includes a plastic optical fiber (POF) having a tip segment that includes a tip surface. The optical cable assembly also includes a socket terminus assembly that terminates the end of the optical cable and is configured to mate with a pin terminus assembly. The socket terminus assembly includes a terminus body having a cable passage. At least a portion of the end of the optical cable extends within the cable passage such that the tip surface of the tip segment of the POF is configured to engage a mating POF of the pin terminus assembly to optically couple the POF to the mating POF.
Abstract:
A connector includes a shell having a mating end configured to be mated with a mating connector and that holds at least one contact. A coupling mechanism is rotatable about the shell. The coupling mechanism includes an inner coupling nut and an outer coupling nut separate from the inner coupling nut. The inner coupling nut has threads configured to be threadably coupled to a mating connector. The inner coupling nut has a track defined by track walls formed into an outer surface of the inner coupling nut. The outer coupling nut has a cavity receiving the inner coupling nut. The outer coupling nut has a post extending into the cavity and being received in the track. The post engages the track walls and is released from the track wall into the track when the connector is fully mated to the mating connector.
Abstract:
A terminus assembly is provided for terminating an optical cable that includes a plastic optical fiber (POF) having a tip segment that includes a tip surface. The terminus assembly includes a shell that includes a cable passage. The cable passage is configured to receive at least a portion of a length of the optical cable therein such that the tip segment of the POF extends within the cable passage. A POF stub is held by the shell. The POF stub extends a length from a mating end to a fiber end. The mating end of the POF stub is configured to optically couple with a mating POF of a mating connector. The fiber end of the POF stub includes a coupling surface. The POF stub is held by the shell such that the fiber end extends within the cable passage of the shell. The coupling surface of the fiber end is configured to be aligned with the tip surface of the POF within the cable passage of the shell such that the POF stub is optically coupled to the POF. The POF stub serves as a forward stop for the POF of the optical cable.
Abstract:
A connector includes a shell having a mating end configured to be mated with a mating connector and that holds at least one contact. A coupling mechanism is rotatable about the shell. The coupling mechanism includes an inner coupling nut and an outer coupling nut separate from the inner coupling nut. The inner coupling nut has threads configured to be threadably coupled to a mating connector. The inner coupling nut has a track defined by track walls formed into an outer surface of the inner coupling nut. The outer coupling nut has a cavity receiving the inner coupling nut. The outer coupling nut has a post extending into the cavity and being received in the track. The post engages the track walls and is released from the track wall into the track when the connector is fully mated to the mating connector.