Abstract:
A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section, and a low spool including a low pressure compressor section and a low pressure turbine. A high spool includes a high pressure compressor section. A gear arrangement is defined along an engine axis. The low spool is operable to drive the fan section through the gear arrangement. A mount system includes an aft mount configured to react at least a portion of a thrust load at an engine case generally parallel to an engine axis.
Abstract:
A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section, a first compressor section including three (3) or more stages, a second compressor section including between eight (8) and thirteen (13) stages, and a first turbine section operable for driving the first compressor section, the first turbine section including between three (3) and six (6) stages, a second turbine section operable for driving the second compressor section, and a gear train defined along an engine centerline axis. One of the first turbine section and the second turbine section is operable to drive the fan section through the gear train.
Abstract:
A gas turbine engine includes, among other things, a fan section including a fan rotor, a gear train defined about an engine axis of rotation, a first nacelle which at least partially surrounds a second nacelle and the fan rotor, the fan section configured to communicate airflow into the first nacelle and the second nacelle, a first turbine, and a second turbine followed by the first turbine. The first turbine is configured to drive the fan rotor through the gear train. A static structure includes a first engine mount location and a second engine mount location.
Abstract:
A gas turbine engine including a core nacelle defined about an engine axis. A fan nacelle is mounted at least partially around the core nacelle to define a fan bypass airflow path for a fan bypass airflow. A gear train is defined along an engine axis. The gear train defines a gear reduction ratio of greater than or equal to about 2.3. A spool along the engine axis drives the gear train. The spool includes a downstream turbine having six or fewer stages. A fan is driven through the gear train by the downstream turbine. A pressure ratio across the fan is less than about 1.45. A fan variable area nozzle is axially movable relative to the fan nacelle to vary a fan nozzle exit area and adjust a pressure ratio of the fan bypass airflow during engine operation.
Abstract:
A gas turbine engine comprises a gear train defined along an engine axis. A spool along the engine axis drives the gear train, and includes a low stage count downstream turbine. A fan rotates at a fan speed about the engine axis and drives the downstream turbine through the gear train. The fan speed is less than a speed of the downstream turbine. A core is surrounded by a core housing defined about the engine axis. A fan nacelle is mounted around the core nacelle to define a fan bypass airflow path for a fan bypass airflow. A bypass ratio defined by the fan bypass passage airflow divided by airflow through the core is greater than about ten (10).
Abstract:
A gas turbine engine includes, among other things, a fan section including a fan rotor, a gear train defined about an engine axis of rotation, a first nacelle which at least partially surrounds a second nacelle and the fan rotor, the fan section configured to communicate airflow into the first nacelle and the second nacelle, a first turbine, and a second turbine followed by the first turbine. The first turbine is configured to drive the fan rotor through the gear train. A static structure includes a first engine mount location and a second engine mount location.
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a spool along an engine axis which drives a gear train, the spool including a low stage count low pressure turbine.
Abstract:
A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section, a low spool that includes a low pressure compressor section, the low pressure compressor section including three (3) or more stages, and a high spool including a high pressure compressor section. The high pressure compressor section includes between eight to thirteen (8-13) stages. A gear train is defined along an engine axis. The low spool is operable to drive the fan section through the gear train.
Abstract:
A gas turbine engine includes a core nacelle defined about an engine axis. A fan nacelle is mounted at least partially around the core nacelle to define a fan bypass airflow path for a fan bypass airflow. A gear train is defined along an engine axis. The gear train defines a gear reduction ratio of greater than or equal to about 2.3. A fan drive turbine along the engine axis which drives the gear train. The fan drive turbine includes three to six (3-6) stages. A fan is configured for rotation within the fan nacelle for operation at a fan pressure ratio less than about 1.45. A fan variable area nozzle is axially movable relative to said fan nacelle to vary a fan nozzle exit area and adjust a pressure ratio of the fan bypass airflow during engine operation. A high bypass gas turbine engine is also disclosed.