Abstract:
A method of reworking an aerospace component includes removing a casting defect from a component manufactured of a non-fusion weldable base alloy to form a cavity. The cavity is then at least partially filled with a multiple of layers of discrete laser powder deposition spots of a filler alloy. A cast component for a gas turbine engine includes a cast component non-fusion weldable base alloy with a cavity filled with a multiple of layers of laser powder deposition spots of a filler alloy. The filler alloy may be different than the non-fusion weldable base alloy. A layer of non-fusion weldable base alloy is at least partially within the cavity and over the filler alloy.
Abstract:
A method for coating a part according to an aspect of the disclosure includes the step binding a metallic powder to a section of the part. The metallic powder is then energized which at least partially melts and resolidifies the metallic powder to form a first metallic coating. After the first layer of metallic coating is formed a second layer of metallic coating is deposited on substantially all of the part.
Abstract:
The present disclosure relates generally to a system and method for applying a metallic coating. A first metallic coating may be applied to a portion of a total surface of a part and a second metallic coating may be applied to substantially the total surface. The metallic coating may be applied to a vane cluster for use in a turbomachine.
Abstract:
A method of reworking an aerospace component includes removing a casting defect from a component manufactured of a non-fusion weldable base alloy to form a cavity. The cavity is then at least partially filled with a multiple of layers of discrete laser powder deposition spots of a filler alloy. A cast component for a gas turbine engine includes a cast component non-fusion weldable base alloy with a cavity filled with a multiple of layers of laser powder deposition spots of a filler alloy. The filler alloy may be different than the non-fusion weldable base alloy. A layer of non-fusion weldable base alloy is at least partially within the cavity and over the filler alloy.
Abstract:
A method of reworking an aerospace component includes removing a casting defect from a component manufactured of a non-fusion weldable base alloy to form a cavity. The cavity is then at least partially filled with a multiple of layers of discrete laser powder deposition spots of a filler alloy. A cast component for a gas turbine engine includes a cast component non-fusion weldable base alloy with a cavity filled with a multiple of layers of laser powder deposition spots of a filler alloy. The filler alloy may be different than the non-fusion weldable base alloy. A layer of non-fusion weldable base alloy is at least partially within the cavity and over the filler alloy.
Abstract:
A method is provided for reworking a component. The method includes at least partially filling a cavity in a non-fusion weldable base alloy with a multiple of layers of a multiple of laser powder deposition spots formed of a filler alloy. Each of the multiple of laser powder deposition spots at least partially overlaps at least one of another of the multiple of laser powder deposition spots. The filler alloy may be different than the non-fusion weldable base alloy.
Abstract:
A method of reworking an aerospace component includes removing a casting defect from a component manufactured of a non-fusion weldable base alloy to form a cavity. The cavity is then at least partially filled with a multiple of layers of discrete laser powder deposition spots of a filler alloy. A cast component for a gas turbine engine includes a cast component non-fusion weldable base alloy with a cavity filled with a multiple of layers of laser powder deposition spots of a filler alloy. The filler alloy may be different than the non-fusion weldable base alloy. A layer of non-fusion weldable base alloy is at least partially within the cavity and over the filler alloy.
Abstract:
A method is provided for reworking a component. The method includes at least partially filling a cavity in a non-fusion weldable base alloy with a multiple of layers of a multiple of laser powder deposition spots formed of a filler alloy. Each of the multiple of laser powder deposition spots at least partially overlaps at least one of another of the multiple of laser powder deposition spots. The filler alloy may be different than the non-fusion weldable base alloy.
Abstract:
The present disclosure relates generally to a system and method for applying a metallic coating. A first metallic coating may be applied to a portion of a total surface of a part and a second metallic coating may be applied to substantially the total surface. The metallic coating may be applied to a vane cluster for use in a turbomachine.