Abstract:
A first device that may include a short tolerant structure, and methods for fabricating embodiments of the first device, are provided. A first device may include a substrate and a plurality of OLED circuit elements disposed on the substrate. Each OLED circuit element may include a fuse that is adapted to open an electrical connection in response to an electrical short in the pixel. Each OLED circuit element may comprise a pixel that may include a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. Each of the OLED circuit elements may not be electrically connected in series with any other of the OLED circuit elements.
Abstract:
Devices and techniques are provided in which a transparent substrate is scored to provide a non-planar surface on one side of the substrate. An OLED is then disposed on the other side of the scored substrate and optically coupled to the substrate. The scored surface provides improvements to outcoupling of light generated by the OLED, with little or no additional thickness relative to the OLED alone.
Abstract:
Devices and techniques are provided in which a transparent substrate is scored to provide a non-planar surface on one side of the substrate. An OLED is then disposed on the other side of the scored substrate and optically coupled to the substrate. The scored surface provides improvements to outcoupling of light generated by the OLED, with little or no additional thickness relative to the OLED alone.
Abstract:
Luminaires and luminaire components are provided that may include emissive, index-matching, and/or outcoupling components that are replaceable separately from other components of the luminaire. In some embodiments, an index-matching component may include a gel sheet or pad that can be disposed between an emissive component and an outcoupling component. The index-matching component may be replaceable separately from the emissive and outcoupling components. In some embodiments, an emissive component including an OLED panel and/or an index-matching component may be replaceable separately from other components of the luminaire.
Abstract:
A first device that may include a short tolerant structure, and methods for fabricating embodiments of the first device, are provided. A first device may include a substrate and a plurality of OLED circuit elements disposed on the substrate. Each OLED circuit element may include a fuse that is adapted to open an electrical connection in response to an electrical short in the pixel. Each OLED circuit element may comprise a pixel that may include a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. Each of the OLED circuit elements may not be electrically connected in series with any other of the OLED circuit elements.
Abstract:
Systems, and methods for the design and fabrication of OLEDs, including large-area OLEDs with metal bus lines, are provided. For a given panel area dimension, target luminous emittance, OLED device structure and efficiency, and electrical resistivity and thickness of the bus line material and electrode onto which the bus lines are disposed, a bus line pattern may be designed to optimize Fill Factor (FF), Luminance Uniformity (U) and Power Loss (PL). Example designs may be to maximize FF, maximize U and minimize PL. or define minimum criteria for U and a maximum criteria for PL, and then to optimize the bus line layout to maximize FF. OLED panels including bus lines with different resistances along the bus line are also described.
Abstract:
Luminaires and luminaire components are provided that may include emissive, index-matching, and/or outcoupling components that are replaceable separately from other components of the luminaire. In some embodiments, an index-matching component may include a gel sheet or pad that can be disposed between an emissive component and an outcoupling component. The index-matching component may be replaceable separately from the emissive and outcoupling components. In some embodiments, an emissive component including an OLED panel and/or an index-matching component may be replaceable separately from other components of the luminaire.
Abstract:
Described herein are devices and methods related to fabrication of organic electroluminescent devices and related components. In certain embodiments, devices and methods for fabricating OLED panels on substrates with non-uniform reflection or un-even surfaces require that the non-uniform features are arranged in a way such that they are not presented in the region where photolithography features are needed. In certain embodiments, where precision processing such as photolithography features are needed, the substrate is designed to be flat.
Abstract:
Luminaires and luminaire components are provided that may include emissive, index-matching, and/or outcoupling components that are replaceable separately from other components of the luminaire. In some embodiments, an index-matching component may include a gel sheet or pad that can be disposed between an emissive component and an outcoupling component. The index-matching component may be replaceable separately from the emissive and outcoupling components. In some embodiments, an emissive component including an OLED panel and/or an index-matching component may be replaceable separately from other components of the luminaire.
Abstract:
Described herein are devices and methods related to fabrication of organic electroluminescent devices and related components. In certain embodiments, devices and methods for fabricating OLED panels on substrates with non-uniform reflection or un-even surfaces require that the non-uniform features are arranged in a way such that they are not presented in the region where photolithography features are needed. In certain embodiments, where precision processing such as photolithography features are needed, the substrate is designed to be flat.