Abstract:
Asynchronous stream generation and processing techniques are described that support implementation of an asynchronous stream mote in which one or more analog sensor signals are used to generate one or more asynchronous streams. On-device operations processing of the one or more asynchronous streams may be performed before transmission of the result(s) to other system components (e.g., peer motes or higher-level system components).
Abstract:
Asynchronous stream generation and processing techniques are described that support implementation of an asynchronous stream mote in which one or more analog sensor signals are used to generate one or more asynchronous streams. On-device operations processing of the one or more asynchronous streams may be performed before transmission of the result(s) to other system components (e.g., peer motes or higher-level system components).
Abstract:
Transient voltage noise, including resistive and reactive noise, causes timing errors at runtime. A heuristic framework, Walking Pads, is introduced to minimize transient voltage violations by optimizing power supply pad placement. It is shown that the steady-state optimal design point differs from the transient optimum, and further noise reduction can be achieved with transient optimization. The methodology significantly reduces voltage violations by balancing the average transient voltage noise of the four branches at each pad site. When pad placement is optimized using a representative stressmark, voltage violations are reduced 46-80% across 11 Parsec benchmarks with respect to the results from IR-drop-optimized pad placement. It is shown that the allocation of on-chip decoupling capacitance significantly influences the optimal locations of pads.
Abstract:
A method of processing data in a memory can include accessing an array of memory cells located on a semiconductor memory die to provide a row of data including n bits, latching the n bits in one or more row buffer circuits adjacent to the array of memory cells on the semiconductor memory die to provide latched n bits operatively coupled to a column address selection circuit on the semiconductor memory die to provide a portion of the n latched bits as data output from the semiconductor memory die responsive to a memory read operation, and serially transferring the latched n bits in the row buffer circuit to an arithmetic logic unit (ALU) circuit located adjacent to the row buffer circuit on the semiconductor memory die.
Abstract:
Transient voltage noise, including resistive and reactive noise, causes timing errors at runtime. A heuristic framework, Walking Pads, is introduced to minimize transient voltage violations by optimizing power supply pad placement. It is shown that the steady-state optimal design point differs from the transient optimum, and further noise reduction can be achieved with transient optimization. The methodology significantly reduces voltage violations by balancing the average transient voltage noise of the four branches at each pad site. When pad placement is optimized using a representative stressmark, voltage violations are reduced 46-80% across 11 Parsec benchmarks with respect to the results from IR-drop-optimized pad placement. It is shown that the allocation of on-chip decoupling capacitance significantly influences the optimal locations of pads.
Abstract:
Transient voltage noise, including resistive and reactive noise, causes timing errors at runtime. A heuristic framework, Walking Pads, is introduced to minimize transient voltage violations by optimizing power supply pad placement. It is shown that the steady-state optimal design point differs from the transient optimum, and further noise reduction can be achieved with transient optimization. The methodology significantly reduces voltage violations by balancing the average transient voltage noise of the four branches at each pad site. When pad placement is optimized using a representative stressmark, voltage violations are reduced 46-80% across 11 Parsec benchmarks with respect to the results from IR-drop-optimized pad placement. It is shown that the allocation of on-chip decoupling capacitance significantly influences the optimal locations of pads.
Abstract:
Transient voltage noise, including resistive and reactive noise, causes timing errors at runtime. A heuristic framework, Walking Pads, is introduced to minimize transient voltage violations by optimizing power supply pad placement. It is shown that the steady-state optimal design point differs from the transient optimum, and further noise reduction can be achieved with transient optimization. The methodology significantly reduces voltage violations by balancing the average transient voltage noise of the four branches at each pad site. When pad placement is optimized using a representative stressmark, voltage violations are reduced 46-80% across 11 Parsec benchmarks with respect to the results from IR-drop-optimized pad placement. It is shown that the allocation of on-chip decoupling capacitance significantly influences the optimal locations of pads.
Abstract:
A method of processing data in a memory can include accessing an array of memory cells located on a semiconductor memory die to provide a row of data including n bits, latching the n bits in one or more row buffer circuits adjacent to the array of memory cells on the semiconductor memory die to provide latched n bits operatively coupled to a column address selection circuit on the semiconductor memory die to provide a portion of the n latched bits as data output from the semiconductor memory die responsive to a memory read operation, and serially transferring the latched n bits in the row buffer circuit to an arithmetic logic unit (ALU) circuit located adjacent to the row buffer circuit on the semiconductor memory die.