Abstract:
A SHC apparatus and process comprise a catalyst precursor reactor for providing a catalyst precursor stream in downstream communication with a source of molybdenum, a SHC feed line for providing a heavy hydrocarbon feed stream in downstream communication with a heater, and a SHC reactor in downstream communication with the SHC feed line and with the catalyst precursor reactor. A process for SHC, the process comprising preparing a catalyst precursor stream comprising molybdenum in a catalyst precursor reactor, mixing the catalyst precursor stream with a heavy hydrocarbon stream to provide a catalyst precursor concentrate stream, heating a hydrocracking hydrocarbon feed stream in a heater to provide a heated hydrocracking feed stream, mixing the catalyst precursor concentrate stream with the heated hydrocarbon stream to provide a SHC feed stream, and reacting the SHC feed stream in a SHC reactor.
Abstract:
Utilization of at least three strippers is proposed for a slurry hydrocracking unit to reduce heater duty for a product fractionation column. A stripping column for stripping a hydrocracked stream from a wash oil stripper is proposed in addition to a cold stripper for a cold hydrocracked stream and a warm stripper for a warm hydrocracked stream. The arrangement enables omission of heating a hot hydrocracked stream from a hot separator in a fired heater before product fractionation.
Abstract:
A process is provided for production of a mesophase material that is capable of producing high performance carbon fibers. The mesophase is produced after heavy hydrocarbons have been treated to remove impurities by hydrotreating or quinoline solvent, followed by use of a toluene solvent to remove light hydrocarbons and then being upgraded by a soaker visbreaking step to produce a desirable amount of mesophase material while preventing formation of coke.
Abstract:
Two or three strippers are used to strip three hydroprocessed effluent streams, perhaps from a slurry hydrocracking reactor, separated by temperature instead of a single stripper to preserve separations previously made and conserving energy and reducing vessel size. A cold stripped stream may be taken as a diesel blending stock without further fractionation.
Abstract:
A hot stripped hydroprocessed stream from a stripper column may be sent directly to a vacuum fractionation column instead of being first processed in an atmospheric fractionation column. If a separate warm stripper column is used, both the warm stripped stream and a hot stripped stream may be fractionated in the same fractionation column, particularly a vacuum fractionation column.
Abstract:
Process and apparatus for two-stage solvent extraction of hydrocarbon products is disclosed. The process comprises passing a heavy hydrocarbon feed stream and a first fresh solvent to a first extraction column to generate a first overhead stream and a first bottom stream. The first overhead stream is passed to a first stripping column to generate a first product stream and a first stripped solvent stream. The first bottom stream is passed to a second extraction column to generate a second overhead stream and a second bottom stream. A second fresh solvent stream is passed to a second extraction column. The second overhead stream is passed to a second stripping column to generate a second product stream and a second stripped solvent stream. Passing the first stripped solvent stream and the second stripped solvent stream to a solvent recovery column and passing the second bottom stream to a pitch stripper.
Abstract:
Utilization of at least three strippers is proposed for a slurry hydrocracking unit to reduce heater duty for a product fractionation column. A stripping column for stripping a hydrocracked stream from a wash oil stripper is proposed in addition to a cold stripper for a cold hydrocracked stream and a warm stripper for a warm hydrocracked stream. The arrangement enables omission of heating a hot hydrocracked stream from a hot separator in a fired heater before product fractionation.
Abstract:
Recycle of slurry hydrocracked product to a subsequent slurry hydrocracking reactor downstream of a lead slurry hydrocracking reactor produces reduced mesophase and provides better reactor stability as opposed to recycle to the lead slurry hydrocracking reactor. The recycle stream may be a vacuum bottoms stream and/or a slop wax stream from a fractionation column.
Abstract:
A process using a dealkylated aromatic liquid improves a heavy hydrocarbon liquid used for supporting molybdenum carbonized catalyst. Dealkylated aromatic liquid can be derived from heavy hydrocarbon materials that have been subjected to cracking, such as fluid catalytic cracking or slurry hydrocracking. The heavy hydrocarbon liquid can comprise a portion of resid SHC feed and a portion of a gas oil stream from SHC effluent.
Abstract:
Methods and apparatuses for processing hydrocarbon stream are provided. In one embodiment, a method for processing a hydrocarbon stream includes hydrocracking the hydrocarbon stream to form a hydrocracking effluent including vacuum gas oil range components. The method removes the vacuum gas oil range components from the hydrocracking effluent to form a processed hydrocracking effluent. Further, the method includes hydrotreating the processed hydrocracking effluent to form a product stream.