Thermally anisotropic composites for thermal management in building environments

    公开(公告)号:US12013149B2

    公开(公告)日:2024-06-18

    申请号:US16849070

    申请日:2020-04-15

    CPC classification number: F24F5/0089 E04B1/62 E04B1/762 E04C2/525

    Abstract: An improved system for thermal management is provided. The system includes thermally anisotropic composites coupled with a thermal loop to re-direct, reduce, and shape heat flows through a building envelope, having the potential to (1) significantly reduce envelope-generated heating and cooling loads and (2) provide grid services such as decreasing peak loads and shaping energy use. In one embodiment, the thermal management system includes an anisotropic composite that consists of alternating layers of thermal insulation and thermally conductive materials that are immediately adjacent to each other, including polyisocyanurate foam boards and aluminum sheets. The thermal management system also includes a thermal loop along the long edge or the entire the perimeter of the anisotropic composite, the thermal loop having dynamically controlled or floating temperature that is maintained at lower than an outdoor ambient temperature (for cooling). An interior wall structure is inwardly adjacent to the anisotropic composite.

    COATED HOLLOW AND EVACUATED INSULATION SPHERES (CEIS)

    公开(公告)号:US20220023817A1

    公开(公告)日:2022-01-27

    申请号:US17384317

    申请日:2021-07-23

    Abstract: An insulation medium invention includes a plurality of microspheres. Each microsphere comprises a porous core comprising a porous core material and having an exterior surface, a gas within the porous core, and a coating layer coating all of the exterior surface of the porous core. The coating layer comprises a coating material which transitions from a first state to a second state. In the first state, the coating material is permeable to the gas. In the second state the material is impermeable to the gas. The coating material in the second state is configured to encapsulate and maintain partial vacuum of the gas inside the porous core. In one embodiment, in the second state the coating is impermeable to air. Insulated structures, a method of making an insulation medium, a fluid storage media, and a method of delivering a fluid are also disclosed.

    POLYMERIC SHELLS AND PARTICLES FOR VACUUM INSULATION PANELS

    公开(公告)号:US20230347557A1

    公开(公告)日:2023-11-02

    申请号:US18211784

    申请日:2023-06-20

    Abstract: A method of forming a polymeric vacuum insulation board is provided, the polymeric vacuum insulation board including a plurality of evacuated, closed-cell pores therein. In one embodiment, the method includes intermixing a polymer with zeolite particles that contain water and extruding the resulting composition under high pressure. During extrusion, water in the zeolite particles evaporates and creates a porous, closed-cell microstructure within a polymer matrix. As the polymer matrix cools and solidifies, water vapor is reabsorbed by the zeolite, which at least partially evacuates the closed-cell pores. In another embodiment, the method includes intermixing a polymer with expandable graphite particles and extruding the resulting composition under high pressure. During extrusion, the expandable graphite particles define evacuated voids. The polymer binder can be selected to include low gas permeance, for example ethylene vinyl alcohol (EvOH) or polyvinylidene chloride (PVDC). In some applications, the polymer can be blended with nano-clays or other additives to further decrease the gas permeance of the vacuum insulation board.

    Roll-to-roll slot die coating method to create interleaving multi-layered films with chemical slurry coatings

    公开(公告)号:US11446915B2

    公开(公告)日:2022-09-20

    申请号:US16895006

    申请日:2020-06-08

    Abstract: An improved method for manufacturing a continuous self-healing barrier film is provided. The method includes slot-die coating opposing sides of a separator substrate with a curing agent slurry and a curable resin slurry using a single-sided coating line or a tandem coating line. The method also includes sequentially interleaving inner and outer protective layers via a continuous roll-to-roll process to create a multi-layered barrier film. The barrier film can optionally be formed into a barrier envelope, and an insulating core material can be inserted into the barrier envelope to define an enclosure. Evacuating and sealing the enclosure along a perimeter of the barrier envelop forms a self-healing vacuum insulation panel with excellent properties for use as a building material and in refrigeration systems, for example. The barrier film can alternatively be used in the manufacture of tires, roofing, cargo containers, food packaging, and pharmaceutical packaging, for example.

    FLUID STORAGE MEDIA AND METHOD OF DELIVERING A FLUID

    公开(公告)号:US20220097016A1

    公开(公告)日:2022-03-31

    申请号:US17509869

    申请日:2021-10-25

    Abstract: A fluid storage media includes a plurality of microspheres. Each microsphere includes a porous core with a porous core material and having an exterior surface. A stored fluid is within the porous core. A coating layer covers all of the exterior surface of the porous core. The coating layer includes a coating material which transitions from a first state to a second state, wherein in the first state the coating material is permeable to the stored fluid, and in the second state the material is impermeable to the stored fluid. The coating material in the second state is configured to encapsulate and maintain the stored fluid inside the porous core. A method of making a fluid storage media, a method of delivering a fluid and a method of delivering a biologically active fluid medication to a patient are also disclosed.

    POLYMERIC VACUUM INSULATION BOARDS
    10.
    发明申请

    公开(公告)号:US20210154894A1

    公开(公告)日:2021-05-27

    申请号:US17105727

    申请日:2020-11-27

    Abstract: A method of forming a polymeric vacuum insulation board is provided, the polymeric vacuum insulation board including a plurality of evacuated, closed-cell pores therein. In one embodiment, the method includes intermixing a polymer with zeolite particles that contain water and extruding the resulting composition under high pressure. During extrusion, water in the zeolite particles evaporates and creates a porous, closed-cell microstructure within a polymer matrix. As the polymer matrix cools and solidifies, water vapor is reabsorbed by the zeolite, which at least partially evacuates the closed-cell pores. In another embodiment, the method includes intermixing a polymer with expandable graphite particles and extruding the resulting composition under high pressure. During extrusion, the expandable graphite particles define evacuated voids. The polymer binder can be selected to include low gas permeance, for example ethylene vinyl alcohol (EvOH) or polyvinylidene chloride (PVDC). In some applications, the polymer can be blended with nano-clays or other additives to further decrease the gas permeance of the vacuum insulation board.

Patent Agency Ranking