摘要:
An aerial image is generated by imaging an object with the use of an imaging optic, the object being illuminated by an illuminating optic by using a light source emitting illuminating radiation, the illuminating optic having a pupil plane. A first data set is defined to represent the object, a second data set is defined to represent the intensity distribution of the illuminating radiation in the pupil plane of the light source, and the aerial image is calculated from the first and the second data set, in which the resolution of the second data set varies according to the intensity or according to the location of the pupil plane. A microscope includes an imaging optic for imaging an object, a detector for capturing an aerial image of the object, and a processing unit for simulating aerial images generated by the microscope.
摘要:
An optical imaging system for inspection microscopes with which lithography masks can be checked for defects particularly through emulation of high-aperture scanner systems. The microscope imaging system for emulating high-aperture imaging systems comprises imaging optics, a detector and an evaluating unit, wherein polarizing optical elements are selectively arranged in the illumination beam path for generating different polarization states of the illumination beam and/or in the imaging beam path for selecting different polarization components of the imaging beam, an optical element with a polarization-dependent intensity attenuation function can be introduced into the imaging beam path, images of the mask and/or sample are received by the detector for differently polarized beam components and are conveyed to the evaluating unit for further processing.
摘要:
During mask inspection it is necessary to identify defects which also occur during wafer exposure. Therefore, the aerial images generated in the resist and on the detector have to be as far as possible identical. In order to achieve an equivalent image generation, during mask inspection the illumination and, on the object side, the numerical aperture are adapted to the scanner used. The invention relates to a mask inspection microscope for variably setting the illumination. It serves for generating an image of the structure (150) of a reticle (145) arranged in an object plane in a field plane of the mask inspection microscope. It comprises a light source (5) that emits projection light, at least one illumination beam path (3, 87, 88), and a diaphragm for generating a resultant intensity distribution of the projection light in a pupil plane (135) of the illumination beam path (3, 87, 88) that is optically conjugate with respect to the object plane. According to the invention, the diaphragm is embodied in such a way that the resultant intensity distribution of the projection light has at least one further intensity value between a minimum and a maximum intensity value.
摘要:
The invention relates to a method and an apparatus for measuring masks for photolithography. In this case, structures to be measured on the mask on a movable mask carrier are illuminated and imaged as an aerial image onto a detector, the illumination being set in a manner corresponding to the illumination in a photolithography scanner during a wafer exposure. A selection of positions at which the structures to be measured are situated on the mask is predetermined, and the positions on the mask in the selection are successively brought to the focus of an imaging optical system, where they are illuminated and in each case imaged as a magnified aerial image onto a detector, and the aerial images are subsequently stored. The structure properties of the structures are then analyzed by means of predetermined evaluation algorithms. The accuracy of the setting of the positions and of the determination of structure properties is increased in this case.
摘要:
An aerial image is generated by imaging an object with the use of an imaging optic, the object being illuminated by an illuminating optic by using a light source emitting illuminating radiation, the illuminating optic having a pupil plane. A first data set is defined to represent the object, a second data set is defined to represent the intensity distribution of the illuminating radiation in the pupil plane of the light source, and the aerial image is calculated from the first and the second data set, in which the resolution of the second data set varies according to the intensity or according to the location of the pupil plane. A microscope includes an imaging optic for imaging an object, a detector for capturing an aerial image of the object, and a processing unit for simulating aerial images generated by the microscope.