Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: (a) providing a substrate; (b) forming a gate structure on the substrate; (c) performing a first deposition process to form a first epitaxial layer adjacent to the gate structure and performing a first etching process to remove part of the first epitaxial layer at the same time; and (d) performing a second etching process to remove part of the first epitaxial layer.
Abstract:
A semiconductor device is provided includes a substrate, a gate structure formed on the substrate, an epitaxial source/drain structure respectively formed at two sides of the gate structure, and a boron-rich interface layer. The boron-rich interface layer includes a bottom-and-sidewall portion and a top portion, and the epitaxial source/drain structure is enclosed by the bottom-and-sidewall portion and the top portion.
Abstract:
A method for fabricating a semiconductor device, and a semiconductor device made with the method are described. In the method, a cavity is formed in a substrate, a first epitaxy process is performed under a pressure higher than 65 torr to form a buffer layer in the cavity, and a second epitaxy process is performed to form a semiconductor compound layer on the buffer layer in the cavity. In the semiconductor device, the ratio (S/Y) of the thickness S of the buffer layer on a lower sidewall of the cavity to the thickness Y of the buffer layer at the bottom of the cavity ranges from 0.6 to 0.8.
Abstract:
A method for fabricating a semiconductor device, and a semiconductor device made with the method are described. In the method, a cavity is formed in a substrate, a first epitaxy process is performed under a pressure higher than 65 torr to form a buffer layer in the cavity, and a second epitaxy process is performed to form a semiconductor compound layer on the buffer layer in the cavity. In the semiconductor device, the ratio (S/Y) of the thickness S of the buffer layer on a lower sidewall of the cavity to the thickness Y of the buffer layer at the bottom of the cavity ranges from 0.6 to 0.8.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate, a gate structure on the substrate, a spacer adjacent to the gate structure, an epitaxial layer in the substrate adjacent to two sides of the spacer, and a dislocation embedded within the epitaxial layer. Preferably, the top surface of the epitaxial layer is lower than the top surface of the substrate, and the top surface of the epitaxial layer has a V-shape.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate, a gate structure on the substrate, a spacer adjacent to the gate structure, an epitaxial layer in the substrate adjacent to two sides of the spacer, and a dislocation embedded within the epitaxial layer. Preferably, the top surface of the epitaxial layer is lower than the top surface of the substrate, and the top surface of the epitaxial layer has a V-shape.