Abstract:
The present disclosure utilizes the aggregation of stimuli-responsive polymers to isolate a diagnostic target (e.g., an antigen) from a solution using magnetophoresis. Isolating the diagnostic target provides a route to identify the presence of the diagnostic target in the solution.
Abstract:
The present disclosure utilizes the aggregation of stimuli-responsive polymers to isolate a diagnostic target (e.g., an antigen) from a solution using magnetophoresis. Isolating the diagnostic target provides a route to identify the presence of the diagnostic target in the solution.
Abstract:
Provided herein are particles assemblies including a shell surrounding a core. The shell includes a particle-stabilizing random copolymer. The core includes a core random copolymer. The particle assemblies have a biomimetic design in which the polymeric components containing discrete chemical and biological functionalities are designed to spontaneously self-assemble into particles. Also provided herein are random copolymers having conjugated therapeutic agents that can be cleaved from the copolymers by an enzyme or water.
Abstract:
The present disclosure utilizes the aggregation of stimuli-responsive polymers to isolate a diagnostic target (e.g., an antigen) from a solution using magnetophoresis. Isolating the diagnostic target provides a route to identify the presence of the diagnostic target in the solution.
Abstract:
The present disclosure utilizes the aggregation of stimuli-responsive polymers to isolate a diagnostic target (e.g., an antigen) from a solution using magnetophoresis. Isolating the diagnostic target provides a route to identify the presence of the diagnostic target in the solution.
Abstract:
The present disclosure utilizes the aggregation of stimuli-responsive polymers to isolate a diagnostic target (e.g., an antigen) from a solution using magnetophoresis. Isolating the diagnostic target provides a route to identify the presence of the diagnostic target in the solution.