摘要:
A differential transmission line includes: a substrate; a ground conductor layer; and a first and a second signal conductor disposed in parallel to each other on the substrate. The first signal conductor and the ground conductor layer compose a first transmission line, whereas the second signal conductor and the ground conductor layer compose a second transmission line. The first transmission line and the second transmission line compose a differential transmission line. The differential transmission line includes a curved region, with a straight region being connected to each end of the curved region. In the ground conductor layer in the curved region, a plurality of slots orthogonal to a local transmission direction of signals in the curved region are formed, and the slots are connected to one another on the inner side of the curvature.
摘要:
A differential transmission line includes: a substrate; a ground conductor layer; and a first and a second signal conductor disposed in parallel to each other on the substrate. The first signal conductor and the ground conductor layer compose a first transmission line, whereas the second signal conductor and the ground conductor layer compose a second transmission line. The first transmission line and the second transmission line compose a differential transmission line. The differential transmission line includes a curved region, with a straight region being connected to each end of the curved region. In the ground conductor layer in the curved region, a plurality of slots orthogonal to a local transmission direction of signals in the curved region are formed, and the slots are connected to one another on the inner side of the curvature.
摘要:
An RF circuit component according to the present invention includes a waveguide 1 and at least one resonator 2, which is arranged inside the waveguide 1. The resonator 2 includes at least one patterned conductor layer, which is parallel to a plane that crosses an H plane, and resonates at a lower frequency than a cutoff frequency, which is defined by the internal dielectric constant, shape and size of the waveguide 1, thereby letting an electromagnetic wave, having a lower frequency than the cutoff frequency, pass through the inside of the waveguide 1.
摘要:
A photonic crystal device according to the present invention includes: a first dielectric substrate 104 having a first lattice structure, of which the dielectric constant changes periodically within a first plane; a second dielectric substrate 105 having a second lattice structure, of which the dielectric constant changes periodically within a second plane; and an adjustment device (pivot 303) for changing a photonic band structure, defined by the first and second lattice structures, by varying relative arrangement of the first and second lattice structures. The first and second dielectric substrates 104 and 105 are stacked one upon the other.
摘要:
A differential transmission line includes: a substrate; a ground conductor layer; and a first and a second signal conductor disposed in parallel to each other on the substrate. The first signal conductor and the ground conductor layer compose a first transmission line, whereas the second signal conductor and the ground conductor layer compose a second transmission line. The first transmission line and the second transmission line compose a differential transmission line. The differential transmission line includes two straight regions and a curved region, interconnecting the two straight regions.
摘要:
In a transmission line pair including a first transmission line and a second transmission line which is so placed in adjacency that a coupled line region to be coupled with the first transmission line is formed, in the coupled line region, the first transmission line includes a first signal conductor which is placed on one surface which is either a top face of a substrate formed from a dielectric or semiconductor or an inner-layer surface parallel to the top face and which has a linear shape along its transmission direction, and the second transmission line includes a second signal conductor which is placed on the one surface of the substrate and which partly includes a transmission-direction reversal region for transmitting a signal along a direction having an angle of more than 90 degrees with respect to the transmission direction within the plane of the placement, and which has a line length different from that of the first signal conductor.
摘要:
A differential transmission line according to the present invention includes: a substrate 101; a ground conductor layer 105 formed on a rear side of the substrate 101; and a first signal conductor 102a and a second signal conductor 102b disposed in parallel to each other on a front side of the substrate 101. The first signal conductor 102a and the ground conductor layer 105 compose a first transmission line, whereas the second signal conductor 102b and the ground conductor layer 105 compose a second transmission line. The first transmission line and the second transmission line compose a differential transmission line 102c. The differential transmission line 102c includes a curved region 104a, with a straight region 104b being connected to each end of the curved region 104a. The line width of the first signal conductor 102a in the curved region 104a is denoted as Wb1; the line width of the second signal conductor 102b in the curved region 104a is denoted as Wb2; the gap width between the first signal conductor 102a and the second signal conductor 102b in the curved region 104a is denoted as Gb; the line width of the first signal conductor 102a in the straight region 104b is denoted as Ws1; the line width of the second signal conductor 102b in the straight region 104b is denoted as Ws2; the gap width between the first signal conductor 102a and the second signal conductor 102b in the straight region 104b is denoted as Gs; the shortest distance from the center of curvature 115 of the curved region to a line edge of the curved region of the first signal conductor 102a that is closer to the center of curvature is denoted as Rb1; and the perpendicular distance from the center of curvature 115 of the curved region to an extension of a line edge of the straight region of the first signal conductor 102a that is closer to the center of curvature is denoted as Rs1. Wb1 is prescribed to be narrower than Ws1; Wb2 is prescribed to be narrower than Ws2; Gb is prescribed to be narrower than Gs; and Rb1 is prescribed to be greater than Rs1.
摘要:
A photonic crystal device according to the present invention includes: a first dielectric substrate 104 having a first lattice structure, of which the dielectric constant changes periodically within a first plane; a second dielectric substrate 105 having a second lattice structure, of which the dielectric constant changes periodically within a second plane; and an adjustment device (pivot 303) for changing a photonic band structure, defined by the first and second lattice structures, by varying relative arrangement of the first and second lattice structures. The first and second dielectric substrates 104 and 105 are stacked one upon the other.
摘要:
An antenna according to the present invention includes a dielectric layer 102 with an upper surface and a lower surface, a signal line strip 101 provided on the upper surface of the dielectric layer 102, and a grounding conductor portion 104 provided on the lower surface of the dielectric layer 102. The surface of the grounding conductor portion 104 includes a plurality of planar areas, each of which has a size that is shorter than the wavelength of an electromagnetic wave to transmit or receive. A distance from a virtual reference plane to each planar area is adjusted on an area-by-area basis. Thus, an antenna, which can change various antenna parameters such as radiation directivity, gain and efficiency dynamically and adaptively according to incessantly changing propagation environment of radio wave, is provided.
摘要:
A transmission line apparatus includes: a substrate 101 with a ground conductor plane; and first and second signal strips 102a, 102b supported on the substrate 101 in parallel with each other. The apparatus further includes at least one additional capacitance element 301 that connects the first and second signal strips 102a, 102b together. The element 301 includes: a first additional conductor 303 spaced from the first signal strip 102a; a second additional conductor 305 spaced from the second signal strip 102b; and a third additional conductor 307 connected to the first and second additional conductors 303, 305 at respective points. When measured in a signal transmission direction, the smallest width W3a of the third additional conductor 307 is shorter than the length L1 or L2 of the first or second additional conductor 303 or 305. And the additional capacitance element 301 has a resonant frequency that is higher than the frequency of a signal being transmitted.