摘要:
A combination of host materials suitable for co-evaporation or premix evaporation, and devices containing the combination of host materials are provided. The combination of host materials provides improved lifetime and efficiency. A method for fabricating devices containing the host material combination is also provided.
摘要:
A combination of host materials suitable for co-evaporation or premix evaporation, and devices containing the combination of host materials are provided. The combination of host materials provides improved lifetime and efficiency. A method for fabricating devices containing the host material combination is also provided.
摘要:
Phosphorescent materials and devices having high efficiency and stability, narrow spectrum, and improved processibility. In particular, iridium complexes containing acac-derived ligands with branched alkyl substituents with branching at a position further than the α position to the carbonyl group, were found to be suitable for use as emitters in OLED devices.
摘要:
Phosphorescent materials comprising iridium complexes of Formula I are provided. Compounds of Formula I are red emitters, and OLED devices incorporating these compounds have improved properties such as higher efficiency and stability.
摘要:
Novel organometallic compounds are provided, which include a 2-phenylpyridine iridium (Irppy) complex having alkyl and/or aryl substituted ligands and a heteroleptic or a homoleptic nature. These materials may be advantageously used in OLEDs to tune evaporation temperature and solubility, narrow emission, and increase device efficiency.
摘要:
Compounds comprising a metal complex having novel ligands are provided. In particular, the compound is an iridium complex comprising novel aza DBX ligands. The compounds may be used in organic light emitting devices, particularly as emitting dopants, providing improved efficiency, low operating voltage, and long lifetime.
摘要:
An organic light emitting diode (OLED) architecture in which efficient operation is achieved without requiring a blocking layer by locating the recombination zone close to the hole transport side of the emissive layer. Aryl-based hosts and Ir-based dopants with suitable concentrations result in an efficient phosphorescent OLED structure. Previously, blocking layer utilization in phosphorescent OLED architectures was considered essential to avoid exciton and hole leakage from the emissive layer, and thus keep the recombination zone inside the emissive layer to provide high device efficiency and a pure emission spectrum.
摘要:
Emissive phosphorescent organometallic compounds are described that produce improved electroluminescence, particularly in the blue region of the visible spectrum. Organic light emitting devices employing such emissive phosphorescent organometallic compounds are also described. Also described is an organic light emitting layer including a host material having a lowest triplet excited state having a decay rate of less than about 1 per second; a guest material dispersed in the host material, the guest material having a lowest triplet excited state having a radiative decay rate of greater than about 1×105 or about 1×106 per second and wherein the energy level of the lowest triplet excited state of the host material is lower than the energy level of the lowest triplet excited state of the guest material.
摘要:
Emissive phosphorescent organometallic compounds are described that produce improved electroluminescence, particularly in the blue region of the visible spectrum. Organic light emitting devices employing such emissive phosphorescent organometallic compounds are also described. Also described is an organic light emitting layer including a host material having a lowest triplet excited state having a decay rate of less than about 1 per second; a guest material dispersed in the host material, the guest material having a lowest triplet excited state having a radiative decay rate of greater than about 1×105 or about 1×106 per second and wherein the energy level of the lowest triplet excited state of the host material is lower than the energy level of the lowest triplet excited state of the guest material.
摘要:
An organic light emitting diode (OLED) architecture in which efficient operation is achieved without requiring a blocking layer by locating the recombination zone close to the hole transport side of the emissive layer. Aryl-based hosts and Ir-based dopants with suitable concentrations result in an efficient phosphorescent OLED structure. Previously, blocking layer utilization in phosphorescent OLED architectures was considered essential to avoid exciton and hole leakage from the emissive layer, and thus keep the recombination zone inside the emissive layer to provide high device efficiency and a pure emission spectrum.