SYSTEMS AND METHODS FOR ORCHESTRATION OF NETWORK FUNCTIONS

    公开(公告)号:US20250106110A1

    公开(公告)日:2025-03-27

    申请号:US18975225

    申请日:2024-12-10

    Abstract: A network function virtualization (NFV) orchestration service includes a centralized orchestration device and a multi-cluster container management (MCCM) platform. The centralized orchestration device stores a catalog of virtual network function descriptors (VNFDs) in an input language; generates, based on the catalog of VNFDs, intents for containerized network function (CNF) services; and stores the generated intents as blocks in a central intent database, wherein the blocks include an input data model for the CNF services. The MCCM platform includes one or more processors to receive and store a copy of the intent database; read design time policies from the copy of the intent database; and convert the input data model into a vendor-specific output data model in an output language.

    Systems and methods for orchestration of network functions

    公开(公告)号:US12199825B2

    公开(公告)日:2025-01-14

    申请号:US18175594

    申请日:2023-02-28

    Abstract: A network function virtualization (NFV) orchestration service includes a centralized orchestration device and a multi-cluster container management (MCCM) platform. The centralized orchestration device stores a catalog of virtual network function descriptors (VNFDs) in an input language; generates, based on the catalog of VNFDs, intents for containerized network function (CNF) services; and stores the generated intents as blocks in a central intent database, wherein the blocks include an input data model for the CNF services. The MCCM platform includes one or more processors to receive and store a copy of the intent database; read design time policies from the copy of the intent database; and convert the input data model into a vendor-specific output data model in an output language.

    SYSTEMS AND METHODS FOR VALIDATION OF VIRTUALIZED NETWORK FUNCTIONS

    公开(公告)号:US20210320844A1

    公开(公告)日:2021-10-14

    申请号:US17340500

    申请日:2021-06-07

    Abstract: Provided are systems and methods for automating the deployment of software-defined and/or virtualized network functions (“xNFs”) within a network via a holistic validation of each xNF against validation criteria and/or performance of prior xNFs. The holistic validation may include receiving an xNF, determining a first amount of risk associated with that xNF based on one or more differences between the xNF and the validation criteria, determining a second amount of risk by comparing performance characteristics of the xNF to performance characteristics of earlier version of the same or similar xNFs, providing the xNF to the network for deployment in response to the total risk being within an acceptable amount of risk, and preventing xNF deployment while providing a notification with a set of recommendations to reduce the xNF risk in response to the total risk exceeding the acceptable amount of risk.

    CONTAINERIZED NETWORK FUNCTION DEPLOYMENT DURING RUNTIME RESOURCE CREATION

    公开(公告)号:US20220283792A1

    公开(公告)日:2022-09-08

    申请号:US17190507

    申请日:2021-03-03

    Abstract: Systems and methods described herein provide a Specialized-Operator enabled with admission control functionalities and Custom Resource Definition (CRD) plugins responsible for improving the reliability of the CNF Lifecycle Management operations for deploying containerized workloads on any heterogeneous cloud platform or in multi-cluster environments. According to one implementation, a computing device includes a sensor Network Function Virtualization (NFV)-extension and an actuator NFV-extension. The sensor NFV-extension obtains, from a Container Infrastructure Service Manager (CISM), an event signal that indicates a deficiency with a customer Containerized Network Function (CNF) deployment; detects a current state for the CNF deployment; determines an intent for the CNF deployment; identifies, based on the intent, a desired state for the CNF deployment; and selects, from a group of available actuator NFV-extensions, the actuator NFV-extension corresponding to the desired state. The actuator NFV-extension may be configured to initiate remediation of the CNF deployment to the desired state.

    Systems and methods for validation of virtualized network functions

    公开(公告)号:US11057274B1

    公开(公告)日:2021-07-06

    申请号:US16844567

    申请日:2020-04-09

    Abstract: Provided are systems and methods for automating the deployment of software-defined and/or virtualized network functions (“xNFs”) within a network via a holistic validation of each xNF against validation criteria and/or performance of prior xNFs. The holistic validation may include receiving an xNF, determining a first amount of risk associated with that xNF based on one or more differences between the xNF and the validation criteria, determining a second amount of risk by comparing performance characteristics of the xNF to performance characteristics of earlier version of the same or similar xNFs, providing the xNF to the network for deployment in response to the total risk being within an acceptable amount of risk, and preventing xNF deployment while providing a notification with a set of recommendations to reduce the xNF risk in response to the total risk exceeding the acceptable amount of risk.

    Systems and methods for cloud topology management during deployment of virtual applications

    公开(公告)号:US12192271B2

    公开(公告)日:2025-01-07

    申请号:US18315494

    申请日:2023-05-10

    Abstract: A device may receive application information of an application to be deployed in a cloud computing environment. The application information may include requirement information including information defining a compute requirement of the application, a storage requirement of the application, and a network connectivity requirement of the application, and first capability information identifying requested capabilities of the first set of devices. The device may receive second capability information identifying actual capabilities of the second set of devices. The device may compare the first capability information and the second capability information to determine a measure of similarity between the first capability information and the second capability information. The device may generate deployment information for deploying the application on a device, of the second set of devices, based on the measure of similarity.

Patent Agency Ranking