摘要:
Interfaces are provided which integrate mistake-proofing concepts in a way easily understandable by the operator and easily configured by a manufacturing engineer. As mistake-proofing concepts are developed tables are populated and associated with specific assembly processes. Sensors are employed to monitor parts selection and tool usage. Sensors used for tool use and parts selection, error messages and actions to be performed or monitored are all defined and related in the tables and in turn to specific assembly orders. The tables are also populated with logic pointers, which are referenced by a Process Logic Control (PLC) unit that has been programmed to recall and carry out infinitely variable monitoring or control of the assembly process. For example when a particular order has been identified to the PLC by way of a scanned barcode or other means, a bill of material and assembly sequence is provided to the operator by appropriate means such as a CRT monitor. Parts bins and assembly points may be indicated by visual or other means to indicate parts and tools to be used and assembly points. Sensors determine when the proper part has been selected for the particular assembly step and/or whether the appropriate tool is used. The PLC then provides feedback to the operator to indicate whether all necessary steps have been accomplished in the proper order, with the proper parts using the proper tools. The PLC will provide the operator with understandable error messages indicating when a step has been improperly completed. The PLC can also control stops on the line to prevent the assembly from moving forward until all steps have been completed according to the specific order program. An override means may also be provided to bypass the PLC controls in which case an error log is compiled and an automated message is sent to. supervisory personnel indicating that the system was overridden by the operator and follow up action is required.
摘要:
Interfaces are provided which integrate mistake-proofing concepts in a way easily understandable by the operator and easily configured by a manufacturing engineer. As mistake-proofing concepts are developed tables are populated and associated with specific assembly processes. Sensors are employed to monitor parts selection and tool usage. Sensors used for tool use and parts selection, error messages and actions to be performed or monitored are all defined and related in the tables and in turn to specific assembly orders. The tables are also populated with logic pointers, which are referenced by a Process Logic Control (PLC) unit that has been programmed to recall and carry out infinitely variable monitoring or control of the assembly process. For example when a particular order has been identified to the PLC by way of a scanned barcode or other means, a bill of material and assembly sequence is provided to the operator by appropriate means such as a CRT monitor. Parts bins and assembly points may be indicated by visual or other means to indicate parts and tools to be used and assembly points. Sensors determine when the proper part has been selected for the particular assembly step and/or whether the appropriate tool is used. The PLC then provides feedback to the operator to indicate whether all necessary steps have been accomplished in the proper order, with the proper parts using the proper tools. The PLC will provide the operator with understandable error messages indicating when a step has been improperly completed. The PLC can also control stops on the line to prevent the assembly from moving forward until all steps have been completed according to the specific order program. An override means may also be provided to bypass the PLC controls in which case an error log is compiled and an automated message is sent to supervisory personnel indicating that the system was overridden by the operator and follow up action is required.
摘要:
Interfaces are provided which integrate mistake-proofing concepts in a way easily understandable by the operator and easily configured by a manufacturing engineer. As mistake-proofing concepts are developed tables are populated and associated with specific assembly processes. Sensors are employed to monitor parts selection and tool usage. Sensors used for tool use and parts selection, error messages and actions to be performed or monitored are all defined and related in the tables and in turn to specific assembly orders. The tables are also populated with logic pointers, which are referenced by a Process Logic Control (PLC) unit that has been programmed to recall and carry out infinitely variable monitoring or control of the assembly process. For example when a particular order has been identified to the PLC by way of a scanned barcode or other means, a bill of material and assembly sequence is provided to the operator by appropriate means such as a CRT monitor. Parts bins and assembly points may be indicated by visual or other means to indicate parts and tools to be used and assembly points. Sensors determine when the proper part has been selected for the particular assembly step and/or whether the appropriate tool is used. The PLC then provides feedback to the operator to indicate whether all necessary steps have been accomplished in the proper order, with the proper parts using the proper tools. The PLC will provide the operator with understandable error messages indicating when a step has been improperly completed. The PLC can also control stops on the line to prevent the assembly from moving forward until all steps have been completed according to the specific order program. An override means may also be provided to bypass the PLC controls in which case an error log is compiled and an automated message is sent to supervisory personnel indicating that the system was overridden by the operator and follow up action is required.
摘要:
Interfaces are provided which integrate mistake-proofing concepts in a way easily understandable by the operator and easily configured by a manufacturing engineer. As mistake-proofing concepts are developed tables are populated and associated with specific assembly processes. Sensors are employed to monitor parts selection and tool usage. Sensors used for tool use and parts selection, error messages and actions to be performed or monitored are all defined and related in the tables and in turn to specific assembly orders. The tables are also populated with logic pointers, which are referenced by a Process Logic Control (PLC) unit that has been programmed to recall and carry out infinitely variable monitoring or control of the assembly process. For example when a particular order has been identified to the PLC by way of a scanned barcode or other means, a bill of material and assembly sequence is provided to the operator by appropriate means such as a CRT monitor. Parts bins and assembly points may be indicated by visual or other means to indicate parts and tools to be used and assembly points. Sensors determine when the proper part has been selected for the particular assembly step and/or whether the appropriate tool is used. The PLC then provides feedback to the operator to indicate whether all necessary steps have been accomplished in the proper order, with the proper parts using the proper tools. The PLC will provide the operator with understandable error messages indicating when a step has been improperly completed. The PLC can also control stops on the line to prevent the assembly from moving forward until all steps have been completed according to the specific order program. An override means may also be provided to bypass the PLC controls in which case an error log is compiled and an automated message is sent to supervisory personnel indicating that the system was overridden by the operator and follow up action is required.
摘要:
A water heating system, comprises a tank, a bracket, a heating element, and a controller. The bracket has a hole and a notch. The heating element is mounted on the tank, and the heating element passes through the hole. The controller is inserted into the notch. Further, the controller comprises a relay coupled to the heating element and logic configured to control a state of the relay. The logic resides in a portion of the controller that is inserted into the notch.
摘要:
A water heating system has a controller that is electronically actuated. In this regard, the controller controls an activation state of at least one heating element by providing an electrical control signal to a relay. In one embodiment, the controller has an emergency shut-off apparatus that is mechanically actuated. Further various features can be optionally implemented to help heat related problems plaguing many conventional water heater controllers that are electronically actuated.
摘要:
A water heater has a modular control system. The water heater comprises a tank, a heating element, a first controller, and a second controller. The heating element is coupled to the tank. The first controller is mounted on the tank and has a first communication port. The second controller has a second communication port communicatively coupled to the first communication port of the first controller. The first controller is configured to control the heating element in accordance with any desired algorithm in an absence of the second controller, and the second controller is configured to perform at least one function in addition to or in lieu of the first controller.
摘要:
A water heating system has a tank, a first heating element, a first temperature sensor, and a controller. The first heating element is mounted on the tank, and the controller is electrically coupled to the first temperature sensor. The controller is configured to detect a stacking condition based on the first temperature sensor and to disable the first heating element in response to detection of the stacking condition.
摘要:
Provided are novel devices, systems, and methods for performing microanalysis of a localized biochemical milieu, and/or for highly localized drug delivery and treatment evaluation.
摘要:
A water heater controller for a water heating system comprises a first temperature sensor, a second temperature sensor, a relay, and logic. The relay an controls an activation state of a heating element. The logic is configured to receive temperature data from the first temperature sensor, and the temperature data is indicative of at least one temperature sensed by the first temperature sensor. The logic is further configured to compensate the temperature data for heat from the relay based on at least one temperature sensed by the second temperature sensor.