Abstract:
A Hall effect sensor of two-dimensional electron gas type comprising, on an insulating substrate, a quantum well structure, a carrier injection layer adjacent to the quantum well structure, of thickness less than 250 .ANG. and having an density per unit area of donors integrated over the whole thickness of the carrier injection layer less than 5.times.10.sup.12 cm.sup.-2, an insulating burial layer deposited on the carrier injection layer, having a conduction band with an energy level greater than the Fermi energy of the sensor and a thickness greater than 200 .ANG.. Applicable to the field of electricity meters and current sensors.
Abstract translation:一种二维电子气体型霍尔效应传感器,包括在绝缘衬底上的量子阱结构,与量子阱结构相邻的载流子注入层,厚度小于250,并且具有供体的单位面积密度 在载流子注入层的整个厚度小于5×10 12 cm -2的情况下,沉积在载流子注入层上的绝缘埋藏层具有能量水平大于传感器的费米能量的导带,并且厚度大于200A 。 适用于电表和电流传感器领域。
Abstract:
Solid state pressure sensors based upon aluminum gallium arsenide devices are disclosed. One embodiment uses a TEGFET as a hydrostatic pressure sensor. By adjustment of the gate voltage, it is possible to vary the operating conditions of the sensor, so as to adapt it dynamically to particular measurement conditions. Another hydrostatic pressure transducer, essentially made from aluminum gallium arsenide on a gallium arsenide substrate, comprises a layer sensitive to pressure and a layer sensitive to temperature: due to its homogeneous structure and its rigorous temperature compensation, this transducer offers both high accuracy and high sensitivity.
Abstract:
A monolithic pressure and/or temperature transducer comprises at least two sensitive semiconductor layers of III-V material sensitive to pressure and to temperature and supported by a common substrate of III-V material, which two layers comprise: a first layer doped with donor type impurities at a first concentration and having a first resistivity as a function of pressure and of temperature; and a second layer doped with donor type impurities at a second concentration different from the first concentration and having a second resistivity as a function of pressure and of temperature, which second resistivity depends on temperature in a different manner than the first resistivity.
Abstract:
The pressure sensor is formed of semiconductor material which is formed on insulating support, i.e., as a semiconductor-on-silicon. The sensor is comprised of four piezoresistive gauges formed in the semiconductor material. Two of the gauges, each have a pair of limbs joined by a base, such that they are U-shaped, and two others are I-shaped. Each of the four gauges comprise two half-gauges, and each half-gauge comprises an elongated sensing zone in semiconductor material and having a reduced width in the plane of the insulating support. Two ohmic contact zones are disposed at the ends of each of the half-gauges, and two connection zones in semiconductor material and of greater width are disposed between the sensing zones and the ohmic contact zones, the form of the two connection zones are the same for each of the eight half-gauges.
Abstract:
Disclosed are apparatus and methodology for providing approaches to remove or reduce thermal drift of the magnetic sensitivity of Hall sensor devices, to improve the stability of resulting signals of interest. Samples of a particular signal or signals of interest having improved stability make for advantageous use in conjunction with electricity meters. At the same time, associated designs and related components have greater simplicity, for reduced complexity in implementation. Among alternative embodiments, a gating structure selected of various present alternative designs may be used to partially cover, to an intentionally selected degree, an active area of a Hall sensor, so that a zero-drift supply current value may likewise be selected so as to satisfy other criteria which may be applicable to use of the Hall sensor. In other alternative embodiments, a gate structure is used which fully covers the Hall sensor active area, but a gate-control technique is practiced which is based on combined use with an external, relatively high resistance voltage-divider circuitry arrangement, again for eliminating temperature-based drift of the magnetic sensitivity of the Hall sensor arrangement, regardless of the end use to which such Hall sensor is applied.
Abstract:
Disclosed are apparatus and methodology for providing approaches to remove or reduce thermal drift of the magnetic sensitivity of Hall sensor devices, to improve the stability of resulting signals of interest. Samples of a particular signal or signals of interest having improved stability make for advantageous use in conjunction with electricity meters. At the same time, associated designs and related components have greater simplicity, for reduced complexity in implementation. Among alternative embodiments, a gating structure selected of various present alternative designs may be used to partially cover, to an intentionally selected degree, an active area of a Hall sensor, so that a zero-drift supply current value may likewise be selected so as to satisfy other criteria which may be applicable to use of the Hall sensor. In other alternative embodiments, a gate structure is used which fully covers the Hall sensor active area, but a gate-control technique is practiced which is based on combined use with an external, relatively high resistance voltage-divider circuitry arrangement, again for eliminating temperature-based drift of the magnetic sensitivity of the Hall sensor arrangement, regardless of the end use to which such Hall sensor is applied.
Abstract:
The method of making a pressure sensor formed of semiconductor material on an insulating support, i.e., as a semiconductor-on-silicon, is described. The sensor is comprised of four piezoresistive gauges formed in the semiconductor material. Two of the gauges, each have a pair of limbs joined by a base, such that they are U-shaped, and two others are I-shaped. Each of the four gauges comprise two half-gauges, and each half-gauge comprises an elongated sensing zone in semiconductor material and having a reduced width in the plane of the insulating support. Two ohmic contact zones are disposed at the ends of each of the half-gauges, and two connection zones in semiconductor material and of greater width are disposed between the sensing zones and the ohmic contact zones, the form of the two connection zones are the same for each of the eight half-gauges.
Abstract:
Disclosed are apparatus and methodology for providing approaches to remove or reduce thermal drift of the magnetic sensitivity of Hall sensor devices, to improve the stability of resulting signals of interest. Samples of a particular signal or signals of interest having improved stability make for advantageous use in conjunction with electricity meters. At the same time, associated designs and related components have greater simplicity, for reduced complexity in implementation. Among alternative embodiments, a gating structure selected of various present alternative designs may be used to partially cover, to an intentionally selected degree, an active area of a Hall sensor, so that a zero-drift supply current value may likewise be selected so as to satisfy other criteria which may be applicable to use of the Hall sensor. In other alternative embodiments, a gate structure is used which fully covers the Hall sensor active area, but a gate-control technique is practiced which is based on combined use with an external, relatively high resistance voltage-divider circuitry arrangement, again for eliminating temperature-based drift of the magnetic sensitivity of the Hall sensor arrangement, regardless of the end use to which such Hall sensor is applied.
Abstract:
Disclosed are apparatus and methodology for providing approaches to remove or reduce thermal drift of the magnetic sensitivity of Hall sensor devices, to improve the stability of resulting signals of interest. Samples of a particular signal or signals of interest having improved stability make for advantageous use in conjunction with electricity meters. At the same time, associated designs and related components have greater simplicity, for reduced complexity in implementation. Among alternative embodiments, a gating structure selected of various present alternative designs may be used to partially cover, to an intentionally selected degree, an active area of a Hall sensor, so that a zero-drift supply current value may likewise be selected so as to satisfy other criteria which may be applicable to use of the Hall sensor. In other alternative embodiments, a gate structure is used which fully covers the Hall sensor active area, but a gate-control technique is practiced which is based on combined use with an external, relatively high resistance voltage-divider circuitry arrangement, again for eliminating temperature-based drift of the magnetic sensitivity of the Hall sensor arrangement, regardless of the end use to which such Hall sensor is applied.
Abstract:
The invention relates to sensors having field effect semiconductors. The sensor of the invention comprises a ring oscillator constituted by an odd number of CMOS inverters disposed in a zone sensitive to the physical property to be measured. In order to increase the sensitivity of the sensor, the N channel of the NMOS transistor in each CMOS inverter is disposed perpendicularly to the P channel of the PMOS transistor.