摘要:
A virtual security coprocessor framework supports creation of at least one device model to emulate a predetermined cryptographic coprocessor. In one embodiment, the virtual security coprocessor framework uses a cryptographic coprocessor in a processing system to create an instance of the device model (DM) in the processing system. The DM may be based at least in part on a predetermined device model design. The DM may emulate the predetermined cryptographic coprocessor in accordance with the control logic of the device model design. In one embodiment, the virtual security coprocessor framework uses a physical trusted platform module (TPM) in a processing system to support one or more virtual TPMs (vTPMs) for one or more virtual machines (VMs) in the processing system. Other embodiments are described and claimed.
摘要:
Methods and apparatus for extending packet processing to trusted programmable and fixed-function accelerators. Secure enclaves are created in system memory of a compute platform, wherein software code external from a secure enclave cannot access code or data within a secure enclave, and software code in a secure enclave can access code and data both within the secure enclave and external to the secure enclave. Software code for implementing packet processing operations is installed in the secure enclaves. The compute platform further includes one or more hardware-based accelerators that are used by the software to offload packet processing operations. The accelerators are configured to read packet data from input queues, process the data, and output processed data to output queues, wherein the input and output queues are located in encrypted portions of memory that may be in a secure enclave or external to the secure enclaves. Tokens are used by accelerators to validate access to memory in secure enclaves, and used by both accelerators and secure enclaves to access encrypted memory external to secure enclaves.
摘要:
Systems and methods for secure delivery of output surface bitmaps to a display engine. An example processing system comprises: an architecturally protected memory; and a plurality of processing devices communicatively coupled to the architecturally protected memory, each processing device comprising a first processing logic to implement an architecturally-protected execution environment by performing at least one of: executing instructions residing in the architecturally protected memory, or preventing an unauthorized access to the architecturally protected memory; wherein each processing device further comprises a second processing logic to establish a secure communication channel with a second processing device of the processing system, employ the secure communication channel to synchronize a platform identity key representing the processing system, and transmit a platform manifest comprising the platform identity key to a certification system.
摘要:
Embodiments of an invention for memory management in secure enclaves are disclosed. In one embodiment, a processor includes an instruction unit and an execution unit. The instruction unit is to receive a first instruction and a second instruction. The execution unit is to execute the first instruction, wherein execution of the first instruction includes allocating a page in an enclave page cache to a secure enclave. The execution unit is also to execute the second instruction, wherein execution of the second instruction includes confirming the allocation of the page.
摘要:
Embodiments of an invention for paging in secure enclaves are disclosed. In one embodiment, a processor includes an instruction unit and an execution unit. The instruction unit is to receive a first instruction. The execution unit is to execute the first instruction, wherein execution of the first instruction includes evicting a first page from an enclave page cache.
摘要:
A technique to enable secure application and data integrity within a computer system. In one embodiment, one or more secure enclaves are established in which an application and data may be stored and executed.
摘要:
A processor to support platform migration of secure enclaves is disclosed. In one embodiment, the processor includes a memory controller unit to access secure enclaves and a processor core coupled to the memory controller unit. The processor core to identify a control structure associated with a secure enclave. The control structure comprises a plurality of data slots and keys associated with a first platform comprising the memory controller unit and the processor core. A version of data from the secure enclave is associated with the plurality of data slots. Migratable keys are generated as a replacement for the keys associated with the control structure. The migratable keys control access to the secure enclave. Thereafter, the control structure is migrated to a second platform to enable access to the secure enclave on the second platform.
摘要:
Embodiments of an invention for logging in secure enclaves are disclosed. In one embodiment, a processor includes an instruction unit and an execution unit. The instruction unit is to receive an instruction having an associated enclave page cache address. The execution unit is to execute the instruction without causing a virtual machine exit, wherein execution of the instruction includes logging the instruction and the associated enclave page cache address.
摘要:
Embodiments of an invention for measuring a secure enclave are disclosed. In one embodiment, a processor includes an instruction unit and an execution unit. The instruction unit is to receive a first, a second, and a third instruction. The execution unit is to execute the first, the second, and the third instruction. Execution of the first instruction includes initializing a measurement field in a control structure of a secure enclave with an initial value. Execution of the second instruction includes adding a region to the secure enclave. Execution of the third instruction includes measuring a subregion of the region.
摘要:
Keying materials used for providing security in a platform are securely provisioned both online and offline to devices in a remote platform. The secure provisioning of the keying materials is based on a revision of firmware installed in the platform.