摘要:
The present invention allows for the use of chip-package co-design of RF transceivers and their components by using discrete active devices in conjunction with passive components. Two particular components are described, including voltage controlled oscillators (VCOs) and low noise amplifiers (LNAs). The high quality passive components for use in the VCOs and LNAs may be obtained by the use of embedded passives in organic substrates. Further, the embedded passives may have multi-band characteristics, thereby allowing multi-band VCOs and LNAs to be implemented with fewer components. In situations where size is a concern, the active devices and passive components utilized in an RF transceiver may be implemented in a low form factor module of less than 1.1 mm thick according to an embodiment of the invention.
摘要:
The present invention allows for the use of chip-package co-design of RF transceivers and their components by using discrete active devices in conjunction with passive components. Two particular components are described, including voltage controlled oscillators (VCOs) and low noise amplifiers (LNAs). The high quality passive components for use in the VCOs and LNAs may be obtained by the use of embedded passives in organic substrates. Further, the embedded passives may have multi-band characteristics, thereby allowing multi-band VCOs and LNAs to be implemented with fewer components. In situations where size is a concern, the active devices and passive components utilized in an RF transceiver may be implemented in a low form factor module of less than 1.1 mm thick according to an embodiment of the invention.
摘要:
Alternating impedance electromagnetic bandgap (AI-EBG) structures, systems incorporating AI-EBG structures, and methods of making AI-EBG structures, are disclosed.
摘要:
Electromagnetic bandgap (EBG) structures, systems incorporating EBG structures, and methods of making EBG structures, are disclosed. An embodiment of the structure, among others, includes a plurality of first elements disposed on a first plane of a device; and a second element connecting each first element to an adjacent first element, the second element being disposed on the first plane of the device. The structure is configured to substantially filter electromagnetic waves to a stopband floor of about −40 dB to about −120 dB in a bandgap of about 100 MHz to about 50 GHz having a width selected from about 1 GHz, 2 GHz, 3 GHz, 5 GHz, 10 GHz, 20 GHz, and 30 GHz. In addition, the structure has a center frequency positioned at a frequency from about 1 GHz to 37 GHz.
摘要:
Alternating impedance electromagnetic bandgap (AI-EBG) structures, systems incorporating AI-EBG structures, and methods of making AI-EBG structures, are disclosed.
摘要:
Electromagnetic bandgap (EBG) structures, systems incorporating EBG structures, and methods of making EBG structures, are disclosed. An embodiment of the structure, among others, includes a plurality of first elements disposed on a first plane of a device; and a second element connecting each first element to an adjacent first element, the second element being disposed on the first plane of the device. The structure is configured to substantially filter electromagnetic waves to a stopband floor of about −40 dB to about −120 dB in a bandgap of about 100 MHz to about 50 GHz having a width selected from about 1 GHz, 2 GHz, 3 GHz, 5 GHz, 10 GHz, 20 GHz, and 30 GHz. In addition, the structure has a center frequency positioned at a frequency from about 1 GHz to 37 GHz.