摘要:
In a magnetic resonance method and system to correct spatial shifts in MR data, at least two measurement data sets are acquired, the additional measurement data set or sets being acquired while switching an additional gradient relative to acquisition of the first measurement data set. For respective corresponding measurement points of the measurement data sets, a phase difference is initially determined from the first measurement data set and at least one additional measurement data set acquired with the additional gradient, with a spatial shift of the measurement points of the first measurement data set being determined from the spatial shift. The magnitude values of the initially measured measurement points are distributed to their correct spatial position corresponding to the determined spatial shifts, so a corrected image data set is created.
摘要:
In a method processor and magnetic resonance (MR) system to generate MR slice exposures of an examination subject, measurement data for a stack of measurement slices through the examination subject are initially acquired using a series of slice measurement sequences. The series of slice measurement sequences is designed to allow a separation of a first material from a second material that has a defined chemical shift relative to said first material, and the position of a measurement slice with measurement data for the first material is spatially shifted relative to the position of a measurement slice with measurement data for the second material. Combination slice exposures are then formed by combining measurement data of the first material from at least a first slice measurement sequence with measurement data of the second material from at least one second slice measurement sequence, such that the image data of the first and second materials are spatially arranged with precise positioning relative to one another, at least within a predetermined degree of tolerance in the combination slice exposures.
摘要:
In a method processor and magnetic resonance (MR) system to generate MR slice exposures of an examination subject, measurement data for a stack of measurement slices through the examination subject are initially acquired using a series of slice measurement sequences. The series of slice measurement sequences is designed to allow a separation of a first material from a second material that has a defined chemical shift relative to said first material, and the position of a measurement slice with measurement data for the first material is spatially shifted relative to the position of a measurement slice with measurement data for the second material. Combination slice exposures are then formed by combining measurement data of the first material from at least a first slice measurement sequence with measurement data of the second material from at least one second slice measurement sequence, such that the image data of the first and second materials are spatially arranged with precise positioning relative to one another, at least within a predetermined degree of tolerance in the combination slice exposures.
摘要:
A method and a pulse sequence optimization device to optimize a pulse sequence for a magnetic resonance system, wherein the pulse sequence includes at least one refocusing pulse, one slice selection gradient pulse, and one gradient spoiler pulse. The pulse duration of the refocusing pulse is shortened, and the pulse duration of the slice selection gradient pulse is adapted to the shortened pulse duration of the refocusing pulse. The amplitude of the slice selection gradient pulse is increased so that the same slice thickness is selected as before the shortening of the pulse duration of the refocusing pulse. The pulse shape of the gradient spoiler pulse is adapted without changing a total spoiler moment, and an optimally shortened pulse duration of the refocusing pulse is achieved when, with the adaptation of the pulse shape of the gradient spoiler pulse, the maximum amplitude of the gradient spoiler pulse equals the amplitude of the slice selection gradient pulse, and an edge steepness of the gradient spoiler pulse is minimized.
摘要:
A method and a measuring-sequence-determining device for determining a measuring sequence for a magnetic resonance system based on at least one intra-repetition-interval time parameter are provided. During the determination of the measuring sequence in a gradient-optimization method, gradient-pulse parameters of the measuring sequence are automatically optimized to reduce at least one gradient-pulse-parameter maximum value. As a boundary condition in the gradient-optimization method, the intra-repetition-interval time parameter is kept constant at least within a specified tolerance value.
摘要:
In a method for generating a pulse sequence for operating a magnetic resonance (MR) system for acquiring data from an examination subject having an interfering object in the patient's body, the bandwidths of at least two of the RF (radio-frequency) pulses in the pulse sequence are matched such that the matched RF pulses respectively excite a congruent slice when they are radiated into an examination subject under the effect of a slice selection gradient of identical amplitude. The matching of the RF pulses in the manner ensures so that the respective slices excited by the at least two RF pulses are subject to the same nonlinearities and inhomogeneities, and therefore the same spatial distortions, and so that signal losses due to inconsistent excitations of the two pulses are avoided. The image data that can be acquired with the pulse sequence are therefore optimized.
摘要:
A method and a measuring-sequence-determining device for determining a measuring sequence for a magnetic resonance system based on at least one intra-repetition-interval time parameter are provided. During the determination of the measuring sequence in a gradient-optimization method, gradient-pulse parameters of the measuring sequence are automatically optimized to reduce at least one gradient-pulse-parameter maximum value. As a boundary condition in the gradient-optimization method, the intra-repetition-interval time parameter is kept constant at least within a specified tolerance value.
摘要:
Generation of a preview image using magnetic resonance signals is provided. A method for the generation of a preview image using magnetic resonance signals includes acquiring a first part and a second part of magnetic resonance signals. During the acquisition of the first part of the magnetic resonance signals, a first k-space is regularly sampled, while, during the acquisition of the second part of the magnetic resonance signals, a second k-space is sampled in a pseudorandomized manner. The first part of the magnetic resonance signals is used to generate a preview image. The second part or the second part and a subset of the first part of the magnetic resonance signals are stored for the generation of a second image.
摘要:
In a magnetic resonance system according to a measurement protocol defined in advance and comprising multiple acquisition parameters, wherein given a non-compliance with at least one limit value (which is automatically established before the beginning of a subject-specific measurement data acquisition)—in particular a SAR limit value and/or a magneto-stimulation limit value and/or a hardware limit value—by the measurement protocol, an adaptation of at least one acquisition parameter ensues using at least one (in particular user-defined) protocol-specific rule for compliance with the limit value, and the measurement data acquisition ensues automatically according to the adapted acquisition parameters.
摘要:
Generation of a preview image using magnetic resonance signals is provided. A method for the generation of a preview image using magnetic resonance signals includes acquiring a first part and a second part of magnetic resonance signals. During the acquisition of the first part of the magnetic resonance signals, a first k-space is regularly sampled, while, during the acquisition of the second part of the magnetic resonance signals, a second k-space is sampled in a pseudorandomized manner. The first part of the magnetic resonance signals is used to generate a preview image. The second part or the second part and a subset of the first part of the magnetic resonance signals are stored for the generation of a second image.