摘要:
An electromagnetic radiation attenuating material or coating consistent with certain embodiments of the present invention uses a binding matrix with an operative quantity of electromagnetic radiation attenuating nano-particles suspended in the binding matrix, wherein, the electromagnetic radiation attenuating nano-particles comprise onion-like-carbon (OLC) particles. In other embodiments, freestanding structures, aerosols and powders or suspensions contained within an enclosure provide EM or Radar absorption, particularly in the range of about 500 MHz to about 30 THz. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
摘要:
Alterations utilizing nanoparticles. Certain embodiments of the invention are methods of delivering a substance to a target using a delivery-aid which includes nanoparticles. Those nanoparticles may be nanocarbon particles. Other embodiments are methods of delivering nanoparticles to a target involving placing a mask between a source of ballistic delivery of nanoparticles and the target. Other embodiments include irradiating a target to cause localized heating of the region of the target in which the nanodiamonds or OLC particles are present. Other embodiments utilize nanoparticles to make cells competent for genetic transformation. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
摘要:
A method of purification and modification of carbon nanoproduct involves forcing a mixture of the dehydrated air or oxygen or ozone or any combination thereof through the carbon nanoproduct under pressure up to 0.8 MPa accompanied by mixing of the carbon nanoproduct and heating in the temperature range from +20 to +550° C. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
摘要:
Alterations utilizing nanoparticles. Certain embodiments of the invention are methods of delivering a substance to a target using a delivery-aid which includes nanoparticles. Those nanoparticles may be nanocarbon particles. Other embodiments are methods of delivering nanoparticles to a target involving placing a mask between a source of ballistic delivery of nanoparticles and the target. Other embodiments include irradiating a target to cause localized heating of the region of the target in which the nanodiamonds or OLC particles are present. Other embodiments utilize nanoparticles to make cells competent for genetic transformation. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
摘要:
Alterations utilizing nanoparticles. Certain embodiments of the invention are methods of delivering a substance to a target using a delivery-aid which includes nanoparticles. Those nanoparticles may be nanocarbon particles. Other embodiments are methods of delivering nanoparticles to a target involving placing a mask between a source of ballistic delivery of nanoparticles and the target. Other embodiments include irradiating a target to cause localized heating of the region of the target in which the nanodiamonds or OLC particles are present. Other embodiments utilize nanoparticles to make cells competent for genetic transformation. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
摘要:
A surface coating, colorant, pigment or polymer composite preparation that provides resistance to degradation when exposed to at least some portion of ultraviolet radiation having wavelengths between approximately 190 and 400 nm is made up of a dispersion of an effective amount of diamond nanoparticles in a binding matrix, wherein at least a portion of the diamond nanoparticles have a size greater than about 60 nm so that the diamond particles provide ultraviolet radiation degradation resistance properties in the dispersion. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
摘要:
A cosmetic or sunscreen preparation provides transmission attenuation of ultraviolet A and ultraviolet B and ultraviolet C light when applied to human tissue to reduce exposure comprises a dispersion of an effective amount of diamond nanoparticle in a physiologically compatible medium, where the diamond nanoparticles have a size greater than about 60 nm.
摘要:
An imaging device (30) can include a plurality of lenses (51, 52, 53, 54) mounted on a multi-dimensional support structure (32), a plurality of optical detectors (40) corresponding to the plurality of lenses for capturing an optical signal from at least two lenses among the plurality of lenses, and a processor (34) for combining the optical signal from at least two lenses to form an image and electronically controlling the field of view and a resolution of the image. The plurality of lenses each can include an array of sub-wavelength apertures or a plurality of photon sieve lenses (36).
摘要:
Alterations utilizing nanoparticles. Certain embodiments of the invention are methods of delivering a substance to a target using a delivery-aid which includes nanoparticles. Those nanoparticles may be nanocarbon particles. Other embodiments are methods of delivering nanoparticles to a target involving placing a mask between a source of ballistic delivery of nanoparticles and the target. Other embodiments include irradiating a target to cause localized heating of the region of the target in which the nanodiamonds or OLC particles are present. Other embodiments utilize nanoparticles to make cells competent for genetic transformation. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
摘要:
A cosmetic or sunscreen preparation provides transmission attenuation of ultraviolet A and ultraviolet B and ultraviolet C light when applied to human tissue to reduce exposure comprises a dispersion of an effective amount of diamond nanoparticle in a physiologically compatible medium, where the diamond nanoparticles have a size greater than about 60 nm.