摘要:
According to some embodiments, an electrode have a high effective work function is formed. The electrode may be the gate electrode of a transistor and may be formed on a high-k gate dielectric by depositing a first layer of conductive material, exposing that first layer to a hydrogen-containing gas, and depositing a second layer of conductive material over the first layer. The first layer may be deposited using a non-plasma process in which the substrate is not exposed to plasma or plasma-generated radicals. The hydrogen-containing gas to which the first layer is exposed may include an excited hydrogen species, which may be part of a hydrogen-containing plasma, and may be hydrogen-containing radicals. The first layer may also be exposed to oxygen before depositing the second layer. The work function of the gate electrode in the gate stack may be about 5 eV or higher in some embodiments.
摘要:
According to some embodiments, an electrode have a high effective work function is formed. The electrode may be the gate electrode of a transistor and may be formed on a high-k gate dielectric by depositing a first layer of conductive material, exposing that first layer to a hydrogen-containing gas, and depositing a second layer of conductive material over the first layer. The first layer may be deposited using a non-plasma process in which the substrate is not exposed to plasma or plasma-generated radicals. The hydrogen-containing gas to which the first layer is exposed may include an excited hydrogen species, which may be part of a hydrogen-containing plasma, and may be hydrogen-containing radicals. The first layer may also be exposed to oxygen before depositing the second layer. The work function of the gate electrode in the gate stack may be about 5 eV or higher in some embodiments.
摘要:
Methods are disclosed herein for depositing a passivation layer comprising fluorine over a dielectric material that is sensitive to chlorine, bromine, and iodine. The passivation layer can protect the sensitive dielectric layer thereby enabling deposition using precursors comprising chlorine, bromine, and iodine over the passivation layer.
摘要:
Methods are disclosed herein for depositing a passivation layer comprising fluorine over a dielectric material that is sensitive to chlorine, bromine, and iodine. The passivation layer can protect the sensitive dielectric layer thereby enabling deposition using precursors comprising chlorine, bromine, and iodine over the passivation layer.
摘要:
A method for fabricating a semiconductor device comprising a gate stack of a gate dielectric and a gate electrode, the method including forming a gate dielectric layer over a semiconductor substrate the gate dielectric layer being a metal oxide or semimetal oxide having a first electronegativity; forming a dielectric VT adjustment layer, the dielectric VT adjustment layer being a metal oxide or semimetal oxide having a second electronegativity; and forming a gate electrode over the gate dielectric layer and the VT adjustment layer; wherein the Effective Work Function of said gate stack is tuned to a desired value by tuning the thickness and composition of the dielectric VT adjustment layer and wherein the second electronegativity value is higher than both the first electronegativity value and the electronegativity of Al2O3.
摘要翻译:一种用于制造半导体器件的方法,包括栅极电介质和栅电极的栅极堆叠,所述方法包括在半导体衬底上形成具有第一电负性的金属氧化物或半金属氧化物的栅极介电层; 形成电介质VT调整层,电介质VT调整层是具有第二电负性的金属氧化物或半金属氧化物; 以及在所述栅极电介质层和所述VT调整层上形成栅电极; 其中所述栅极叠层的有效功函数通过调谐介电VT调整层的厚度和组成而被调谐到期望值,并且其中第二电负性值高于第一电负性值和Al 2 O 3的电负性。
摘要:
A method for fabricating a semiconductor device comprising a gate stack of a gate dielectric and a gate electrode, the method including forming a gate dielectric layer over a semiconductor substrate the gate dielectric layer being a metal oxide or semimetal oxide having a first electronegativity; forming a dielectric VT adjustment layer, the dielectric VT adjustment layer being a metal oxide or semimetal oxide having a second electronegativity; and forming a gate electrode over the gate dielectric layer and the VT adjustment layer; wherein the Effective Work Function of said gate stack is tuned to a desired value by tuning the thickness and composition of the dielectric VT adjustment layer and wherein the second electronegativity value is higher than both the first electronegativity value and the electronegativity of Al2O3
摘要:
Highly thermally stable metal silicides and methods utilizing the metal silicides in semiconductor processing are provided. The metal silicides are preferably nickel silicides formed by the reaction of nickel with substitutionally carbon-doped single crystalline silicon which has about 2 atomic % or more substitutional carbon. Unexpectedly, the metal silicides are stable to temperatures of about 900° C. and higher and their sheet resistances are substantially unaffected by exposure to high temperatures. The metal silicides are compatible with subsequent high temperature processing steps, including reflow anneals of BPSG.
摘要:
Disclosed are monolithically integrated three-dimensional (3D) DRAM array structures that include one-transistor, one-capacitor (1T1C) cells embedded at multiple device tiers of a layered substrate assembly. In some embodiments, vertical electrically conductive data-line and ground pillars extending through the substrate assembly provide the transistor source and ground voltages, and horizontal electrically conductive access lines at multiple device levels provide the transistor gate voltages. Process flows for fabricating the 3D DRAM arrays are also described.
摘要:
Highly thermally stable metal silicides and methods utilizing the metal silicides in semiconductor processing are provided. The metal silicides are preferably nickel silicides formed by the reaction of nickel with substitutionally carbon-doped single crystalline silicon which has about 2 atomic % or more substitutional carbon. Unexpectedly, the metal silicides are stable to temperatures of about 900° C. and higher and their sheet resistances are substantially unaffected by exposure to high temperatures. The metal silicides are compatible with subsequent high temperature processing steps, including reflow anneals of BPSG.