摘要:
Encoded combinatorial chemistry is provided, where sequential synthetic schemes are recorded using organic molecules, which define choice of reactant, and stage, as the same or different bit of information. Various products can be produced in the multi-stage synthesis, such as oligomers and synthetic non-repetitive organic molecules. Conveniently, nested families of compounds can be employed as identifiers, where number and/or position of a substituent define the choice. Alternatively, detectable functionalities may be employed, such as radioisotopes, fluorescers, halogens, and the like, where presence and ratios of two different groups can be used to define stage or choice. Particularly, pluralities of identifiers may be used to provide a binary or higher code, so as to define a plurality of choices with only a few detachable tags. The particles may be screened for a characteristic of interest, particularly binding affinity, where the products may be detached from the particle or retained on the particle. The reaction history of the particles which are positive for the characteristic can be determined by the release of the tags and analysis to define the reaction history of the particle.
摘要:
Encoded combinatorial chemistry is provided, where sequential synthetic schemes are recorded using organic molecules, which define choice of reactant, and stage, as the same or different bit of information. Various products can be produced in the multi-stage synthesis, such as oligomers and synthetic non-repetitive organic molecules. Conveniently, nested families of compounds can be employed as identifiers, where number and/or position of a substituent define the choice. Alternatively, detectable functionalities may be employed, such as radioisotopes, fluorescers, halogens, and the like, where presence and ratios of two different groups can be used to define stage or choice. Particularly, pluralities of identifiers may be used to provide a binary or higher code, so as to define a plurality of choices with only a few detachable tags. The particles may be screened for a characteristic of interest, particularly binding affinity, where the products may be detached from the particle or retained on the particle. The reaction history of the particles which are positive for the characteristic can be determined by the release of the tags and analysis to define the reaction history of the particle.
摘要:
Encoded combinatorial chemistry is provided, where sequential synthetic schemes are recorded using organic molecules, which define choice of reactant, and stage, as the same or different bit of information. Various products can be produced in the multi-stage synthesis, such as oligomers and synthetic non-repetitive organic molecules. Conveniently, nested families of compounds can be employed as identifiers, where number and/or position of a substituent define the choice. Alternatively, detectable functionalities may be employed, such as radioisotopes, fluorescers, halogens, and the like, where presence and ratios of two different groups can be used to define stage or choice. Particularly, pluralities of identifiers may be used to provide a binary or higher code, so as to define a plurality of choices with only a few detachable tags. The particles may be screened for a characteristic of interest, particularly binding affinity, where the products may be detached from the particle or retained on the particle. The reaction history of the particles which are positive for the characteristic can be determined by the release of the tags and analysis to define the reaction history of the particle.
摘要:
Encoded combinatorial chemistry is provided, where sequential synthetic schemes are recorded using organic molecules, which define choice of reactant, and stage, as the same or different bit of information. Various products can be produced in the multi-stage synthesis, such as oligomers and synthetic non-repetitive organic molecules. Conveniently, nested families of compounds can be employed as identifiers, where number and/or position of a substituent define the choice. Alternatively, detectable functionalities may be employed, such as radioisotopes, fluorescers, halogens, and the like, where presence and ratios of two different groups can be used to define stage or choice. Particularly, pluralities of identifiers may be used to provide a binary or higher code, so as to define a plurality of choices with only a few detachable tags. The particles may be screened for a characteristic of interest, particularly binding affinity, where the products may be detached from the particle or retained on the particle. The reaction history of the particles which are positive for the characteristic can be determined by the release of the tags and analysis to define the reaction history of the particle.
摘要:
Encoded combinatorial chemistry is provided, where sequential synthetic schemes are recorded using organic molecules, which define choice of reactant, and stage, as the same or different bit of information. Various products can be produced in the multi-stage synthesis, such as oligomers and synthetic non-repetitive organic molecules. Conveniently, nested families of compounds can be employed as identifiers, where number and/or position of a substituent define the choice. Alternatively, detectable functionalities may be employed, such as radioisotopes, fluorescers, halogens, and the like, where presence and ratios of two different groups can be used to define stage or choice. Particularly, pluralities of identifiers may be used to provide a binary or higher code, so as to define a plurality of choices with only a few detachable tags. The particles may be screened for a characteristic of interest, particularly binding affinity, where the products may be detachable from the particle or retained on the particle. The reaction history of the particles which are positive for the characteristic can be determined by the release of the tags and analysis to define the reaction history of the particle.
摘要:
Encoded combinatorial chemistry is provided, where sequential synthetic schemes are recorded using organic molecules, which define choice of reactant, and stage, as the same or different bit of information. Various products can be produced in the multi-stage synthesis, such as oligomers and synthetic non-repetitive organic molecules. Conveniently, nested families of compounds can be employed as identifiers, where number and/or position of a substituent define the choice. Alternatively, detectable functionalities may be employed, such as radioisotopes, fluorescers, halogens, and the like, where presence and ratios of two different groups can be used to define stage or choice. Particularly, pluralities of identifiers may be used to provide a binary or higher code, so as to define a plurality of choices with only a few detachable tags. The particles may be screened for a characteristic of interest, particularly binding affinity, where the products may be detached from the particle or retained on the particle. The reaction history of the particles which are positive for the characteristic can be determined by the release of the tags and analysis to define the reaction history of the particle.
摘要:
Encoded combinatorial chemistry is provided, where sequential synthetic schemes are recorded using organic molecules, which define choice of reactant, and stage, as the same or different bit of information. Various products can be produced in the multi-stage synthesis, such as oligomers and synthetic non-repetitive organic molecules. Conveniently, nested families of compounds can be employed as identifiers, where number and/or position of a substituent define the choice. Alternatively, detectable functionalities may be employed, such as radioisotopes, fluorescers, halogens, and the like, where presence and ratios of two different groups can be used to define stage or choice. Particularly, pluralities of identifiers may be used to provide a binary or higher code, so as to define a plurality of choices with only a few detachable tags. The particles may be screened for a characteristic of interest, particularly binding affinity, where the products may be detached from the particle or retained on the particle. The reaction history of the particles which are positive for the characteristic can be determined by the release of the tags and analysis to define the reaction history of the particle.
摘要:
A method of producing libraries of genes encoding antigen-combining molecules or antibodies is described. In addition, a method of producing antigen-combining molecules which does not require an in vivo procedure is described. Vectors useful in the present method and antigen-combining molecules produced by the method are discussed. The antigen-combining molecules are useful for the detection, quantitation, purification and neutralization of antigens, as well as for diagnostic, therapeutic and prophylactic purposes.
摘要:
A method of producing libraries of genes encoding antigen-combining molecules or antibodies; a method of producing antigen-combining molecules which does not require an in vivo procedure; a method of obtaining antigen-combining molecules of selected specificity which does not require an in vivo procedure; vectors useful in the present method; and antigen-combining molecules produced by the method. The antigen-combining molecules are useful for the detection, quantitation, purification and neutralization of antigens, as well as for diagnostic, therapeutic and prophylactic purposes.
摘要:
The present invention provides methods and compositions related to genomic profiling, and in particular, to assigning probabilistic measure of clinical outcome for a patient having a disease or a tumor using segmented genomic profiles such as those produced by representational oligonucleotide microarray analysis (ROMA).