Abstract:
Silicon granulate is produced in a fluidized bed reactor having a fluidized bed region fluidized by a gas flow and heated by a heating apparatus. Seed particles and a feed gas including hydrogen and silane and/or halosilane is continuously supplied, and elemental silicon is deposited on the seed particles to form the silicon granulate, which is discharged as a continuous product stream from the reactor. The fluidized bed temperature affects the quality and formation of the product stream, which may be determined as the temperature of an offgas stream from the fluidized bend region. The temperature, as a responding variable may be determined and controlled by means of the mass and energy balance of a defined scheme.
Abstract:
Granular polycrystalline silicon includes a compact matrix including radiating acicular crystal aggregates of crystal size from 0.001-200 μm. A process for producing granular polycrystalline silicon includes producing granular silicon in a fluidized bed reactor from a gas mixture containing TCS (20-29 mol %) and hydrogen at a fluidized bed temperature of 900-970° C., dividing the granular silicon in a screen system having at least one screen deck into at least two screen fractions, the smallest screen fraction being ground in a grinding system to give seed particles having a size of 100-1500 μm and a mass-based median value from 400 to 900 μm, and these seed particles being supplied to fluidized bed reactor, and a further screen fraction being supplied to a fluidized bed reactor, and being surface-treated with a gas mixture containing TCS (5.1-10 mol %) and hydrogen at a fluidized bed temperature of 870-990° C.
Abstract:
Assembly of a fluidized bed reactor for the preparation of polycrystalline silicon granules by chemical vapor deposition of silicon onto seed particles and removal of polycrystalline silicon granules is facilitated without breakage and with gas tightness by a specific assembly sequence.
Abstract:
The rate of rod fallover in the production of polycrystalline silicon by the Siemens process is sharply reduced by cleaning the Siemens reactor base plate by at least a two-step procedure comprising suctioning the base plate in one step, and subsequently cleaning with liquid or solid cleaning medium in a second step, between each phase of rod removal and new support body installation.
Abstract:
The native oxide layer on silicon support rods in the Siemens polysilicon production process is removed by heating the rods to a temperature of 1100-1200° C. and contacting the rods with hydrogen at a system pressure of 1.1E5 to 6E6 Pa. Oxide is rapidly removed, reducing overall process time and increasing space time yield. The use of hydrogen, optionally purified from a polysilicon deposition and containing only traces of HCl reduces reactor corrosion and loss of silicon from the support rods.
Abstract:
Granular polysilicon is produced in a fluidized-bed reactor by fluidizing silicon particles by means of a gas flow in a fluidized bed heated to a temperature of 850-1100° C., adding a silicon-containing reaction gas by means of a nozzle and depositing of silicon on the silicon particles, wherein, in at least 56% of an axially symmetric region around a nozzle opening of the nozzle,the reaction gas concentration is greater than 75% of the maximum concentration of the reaction gas (10 to 50 mol %),the fluidized-bed temperature is greater than 95% of the fluidized-bed temperature outside the axially symmetric region (850-1100° C.) andthe solids concentration is greater than 85% of the solids concentration at the edge of the fluidized bed (55 to 90% by volume).
Abstract:
Contamination of surfaces of polysilicon rods removed from a Siemens reactor in a polysilicon production facility is reduced by cleaning the production facility at least every other week with a cleaning liquid containing water, optionally also containing neutral surfactants.