摘要:
An electrical control system for an electrically heated window in a motor vehicle has a voltage source including a generator, a voltage regulator for regulating a generator output voltage, a transformer switched between the generator and a heating window, the generator output voltage being increased before supplying to the heatable window, and a unit for measuring a temperature of the transformer and interrupting a communication between the transformer and the voltage source in the event of exceeding an adjustable limiting temperature.
摘要:
The description concerns a voltage regulator (12) for regulating the output voltage (UB+) of an alternator (10) which is driven by an internal combustion engine. The voltage regulator (12) has an additional circuit (24) which evaluates the exciter current duty cycle (T) and supplies a signal (S1) at its output which is high when the exciter current duty cycle is high and low when the exciter current duty cycle is low. The circuit (24) is integrated in the voltage regulator (12) and the output signal (S1) supplied by it is transmitted via an additional regulator terminal (DA) and can be fed to the control device (25) of the internal combustion engine, where it is used, for instance, to increase the idling speed of the engine and accordingly also to increase the alternator speed and thus the power delivered by the alternator (10). It is also possible to switch off unnecessary consumers with this signal.
摘要:
A generator having an exciting winding and a standard load associated with a standard exciting current in the exciting winding can be controlled by a voltage regulator which adjusts an exciting current in the exciting winding and a temperature measurement device in a predetermined location in the generator and/or a voltage regulator associated with the generator, which is connected to the voltage regulator, advantageously via a microprocessor device or a pulse duration modulation circuit connected to the final regulating stage of the voltage regulator for gating the exciting current. So that the generator can be dimensioned to operate above its maximum rated temperature and can be operated in a superexcited state, the method of controlling the generator includes the steps of increasing the exciting current in the exciting winding beyond the standard exciting current to operate the generator at a higher load than the standard load; measuring a temperature T.sub.G at a predetermined location, advantageously in the generator, with the temperature measurement device; determining an allowed limiting temperature T.sub.GMAX at the predetermined location; lowering the exciting current, I.sub.Err, when the temperature T.sub.G is greater than the allowed limiting temperature T.sub.GMAX and maintaining the output power as high as possible without exceeding the allowed limiting temperature.
摘要:
Fresh air from an area located outside of the engine compartment is supplied to an alternator in a motor vehicle by ventilator. The ventilator is supplied with voltage from the alternator power supply system, and since a failure of the ventilator could lead to destruction of the alternator due to heat, the functioning of the ventilator is monitored by a device or circuit for monitoring and/or controlling the ventilator. This circuit also has a device for self-checking and controls the additional ventilator as a function of the alternator temperature by a device for measuring alternator temperature electrically connected to it.
摘要:
A regulating device for regulating the output voltage of a generator; in particular a vehicle generator is described. To improve protection of the voltage regulation from failure, for normal operation it is proposed to perform the regulation using a main regulator which is implemented as software in a control unit, and in the event of a malfunction of the main regulator, to perform the regulation using an auxiliary regulator.
摘要:
In a device and a method for regulating an alternator increased alternator output is achieved either in that the exciter current can have a value above the nominal exciter current or in that the alternator control parameters are fixed in such a way that overheating could occur under unfavorable circumstances. In order to prevent this overheating even under unfavorable circumstances, the temperature is measured preferably in the regulator and the temperature at critical locations is determined from this temperature while taking into account typical parameters. This can be effected in that the temperature or temperatures which would occur in stationary operation are first determined. When an impermissible temperature is detected, the exciter current is reduced by suitable steps until the allowable maximum temperature is not exceeded.
摘要:
In a circuit arrangement for measuring a starting of rotation of a generator having an exciting winding and three-phase windings, a voltage regulator regulates an output voltage of the generator by influencing an exciting current, the three-phase windings are connected to one another at a point, one of the phase windings is connected to ground via a first resistor, another of the phase windings is connected to ground via a second resistor, a voltage across the first resistor is evaluated as a rotational-speed-dependent alternating voltage, this voltage is compared with a threshold voltage, and the starting of the rotation of the generator is detected when the measured voltage exceeds the threshold voltage.
摘要:
A device for supplying voltage to at least one consuming device in a motor vehicle including two parallel generators, two voltage regulators associated with each of the generators, two batteries each connected with one of the voltage regulators, a starter switch connected with at least one of the batteries and the voltage regulators, a charge control lamp for signalling connected with the starter switch and the voltage regulators, switching device for electrically connecting and disconnecting the consuming device or devices, and devices for controlling the voltage regulators so that during starting the charge control lamp indicates starting and the switching device disconnects the consuming devices and if a defect occurs in either generator-voltage regulator system, the charge control light lights and the consuming device or devices is (or are) supplied with current, even if, for example, one of the generators fails. The device for supplying voltage advantageously includes a switch device having four diodes, the anodes of two diodes (D1,D2) being connected with each other and the charge control lamp and the cathodes of the two diodes (D1,D2) being each connected to a different voltage regulator, and the cathodes of the other two diodes (D3,D4) being connected with each other and the switching device (13).
摘要:
A voltage regulator (4) for a generator (1), particularly for use in motor vehicles, is provided which produces an average field current in the exciting winding (2) of the generator (1) by switching on and off the field current by a controlled semiconductor switch in cooperation with a recovery diode in such a way that the generator voltage remains approximately constant independently of the load and the speed. The voltage regulator (4) contains an integrally acting component for compensating for load-dependent and speed-dependent errors, which component is produced by a nonlinearly working integrator for the relative turn-on period of the current through the exciting winding (2) and is fed back into the regulating circuit of the voltage regulator (4). The nonlinearly of the output variable of the integrator is produced in that, for the formation of the correction function, one period portion during the current flow through the exciting winding (2) of the generator (1) and the controlled semiconductor switch is evaluated differently than the other period portion during the current flow through the exciting winding (2) and the recovery diode.
摘要:
A voltage regulator for generators is proposed which, compared with a voltage regulator known, for example, from DE-PS 27 38 897, is supplemented in such a manner that an integral component corresponding to the relative operating time of the field current is formed and this component is fed into the actual control loop. The relative operating time of the field current in this arrangement can be obtained more or less directly from the switching characteristic of the switching transistor (20) for the field current or by means of a sensing resistor (33) in series with the exciter winding (21).