摘要:
A networking operation dispatch system based on electronic zones for rail vehicle comprises: a zone-end relay computer, a communication ranging antenna along rail, a locomotive-mounted response computer and a road networking computer, wherein: the zone-end relay computer is installed on an end of each electronic zone; the communication ranging antenna along rail has an equivalent length to the electronic zone, a first end of the communication ranging antenna along rail is connected with the zone-end relay computer and a second thereof is disposed in the air; the locomotive-mounted response computer is installed on each locomotive and communicates with the zone-end relay computer in the electronic zone occupied by the locomotive via the communication ranging antenna; and the road networking computer connects each zone-end relay computer to form a network. A rail security detecting sensor is provided in the electronic zone.
摘要:
A networking operation dispatch system based on electronic zones for rail vehicle comprises: a zone-end relay computer, a communication ranging antenna along rail, a locomotive-mounted response computer and a road networking computer, wherein: the zone-end relay computer is installed on an end of each electronic zone; the communication ranging antenna along rail has an equivalent length to the electronic zone, a first end of the communication ranging antenna along rail is connected with the zone-end relay computer and a second thereof is disposed in the air; the locomotive-mounted response computer is installed on each locomotive and communicates with the zone-end relay computer in the electronic zone occupied by the locomotive via the communication ranging antenna; and the road networking computer connects each zone-end relay computer to form a network. A rail security detecting sensor is provided in the electronic zone.
摘要:
The present invention provides a method for improving operation density of rail vehicles and for preventing head-on collision and rear-ending collision. Said method divides a rail line into equidistant electronic zones, the length of a zone being greater than the shortest safe distance between two running vehicles. Said method installs a locomotive passing detection alarm device in each zone, when a locomotive travels at high speed on the rail, the locomotive passing detection alarm device corresponding to the zone occupied by the locomotive itself will simultaneously access adjacent front and back zones, and determine whether the two adjacent zones are simultaneously occupied by locomotives. If the two adjacent. zones are simultaneously occupied by locomotives, the locomotive passing alarm device will send an alarm signal to the locomotives to warn or otherwise take measures. The aforesaid method can avoid locomotive head-on collision and rear-end collision and increase transportation density according to the vehicle speed and distance at the same time, thus improving the transportation efficiency.
摘要:
The present invention provides a method for improving operation density of rail vehicles and for preventing head-on collision and rear-ending collision. Said method divides a rail line into equidistant electronic zones, the length of a zone being greater than the shortest safe distance between two running vehicles. Said method installs a locomotive passing detection alarm device in each zone, when a locomotive travels at high speed on the rail, the locomotive passing detection alarm device corresponding to the zone occupied by the locomotive itself will simultaneously access adjacent front and back zones, and determine whether the two adjacent zones are simultaneously occupied by locomotives. If the two adjacent. zones are simultaneously occupied by locomotives, the locomotive passing alarm device will send an alarm signal to the locomotives to warn or otherwise take measures. The aforesaid method can avoid locomotive head-on collision and rear-end collision and increase transportation density according to the vehicle speed and distance at the same time, thus improving the transportation efficiency.
摘要:
A peak junction temperature monitoring system for a semiconductor device includes a peak power dissipation sensor for sensing the peak power dissipation in the device. A temperature sensor senses an average temperature of the device, and a peak junction temperature computation circuit generates a signal representative of a peak junction temperature based on input from the peak power dissipation sensor and the temperature sensor.
摘要:
Embodiments are directed towards generating market-specific ranking models by leveraging target market specific pairwise preference data. The pairwise preference data includes market-specific training examples, while a ranking model from another market captures the common characteristics of the resulting ranking model. In one embodiment, the ranking model is trained by applying a Tree Based Ranking Function Adaptation (TRADA) algorithm to multi-grade labeled training data, such as editorially generated training data. Then, contradictions between the TRADA generated ranking model and target-market specific pairwise preference data are identified. For each identified contradiction, new training data is generated to correct the contradiction. Then, in one embodiment, an algorithm such as TRADA is applied to the existing ranking model and the new training data to generate a new ranking model.
摘要:
An electronic device such as a circuit board has a contact pad for connection to a contact of a component, and a pad portion interconnection. The contact pad has physically separate pad portions. The pad portion interconnection electrically connects the pad portions of the contact pad, independently of any mounted connection on the pad portions. Providing multiple pad portions for a single contact pad allows the contact pad to function even if one of the pad portions is damaged such as by peeling off. An example application is an EMC (Electromagnetic Compatibility) and/or ESD (Electro-Static Discharge) test circuit board.
摘要:
In one embodiment, access a set of recency ranking data comprising one or more recency search queries and one or more recency search results, each of the recency search queries being recency-sensitive with respect to a particular time period and being associated with a query timestamp representing the time at which the recency search query is received at a search engine, each of the recency search results being generated by the search engine for one of the recency search queries and comprising one or more recency network resources. Construct a plurality of recency features from the set of recency ranking data. Train a first ranking model via machine learning using at least the recency features.
摘要:
A dynamic dada sampling system and method is disclosed for in vivo small animal fluorescence molecular imaging and dual-modality molecular imaging. The system comprises a computer, a rotation stage for animal suspension driven by a motor, and a fluorescence excitation-detection apparatus. The fluorescence excitation-detection apparatus comprises a fluorescence excitation module and a fluorescence detection module. The CCD device of the fluorescence detection module is connected to a computer through an interface controller. The motor is connected to a computer through RS232 interface. The process of dynamic data acquisition is as follows: a fluorescent probe is injected into a small animal in order to target specific cells or tissues; a small animal is vertically hung on a rotation stage after anesthesia; the fluorescence imaging detection module acquires the emitting light continuously. The present invention can provide 360 degree imaging quickly, efficiently, and non-invasively.
摘要:
In one embodiment, access a set of recency ranking data comprising one or more recency search queries and one or more recency search results, each of the recency search queries being recency-sensitive with respect to a particular time period and being associated with a query timestamp representing the time at which the recency search query is received at a search engine, each of the recency search results being generated by the search engine for one of the recency search queries and comprising one or more recency network resources. Construct a plurality of recency features from the set of recency ranking data. Train a first ranking model via machine learning using at least the recency features.