Abstract:
The non-productive motion of an automatic composite tape laydown machine is optimized to increase the overall rate of the laydown. Ordering of tape courses is analyzed to determine the time required to move between courses using a time function that reflects operating characteristics and limitations of the tape laydown machine. The ordering is optimized by re-ordering, grouping and/or partitioning the tape courses so as to reduce the non-productive motion of the machine. The optimized ordering is used by a NC program that controls the operation of the machine.
Abstract:
The non-productive motion of an automatic composite tape laydown machine is optimized to increase the overall rate of the laydown. Ordering of tape courses is analyzed to determine the time required to move between courses using a time function that reflects operating characteristics and limitations of the tape laydown machine. The ordering is optimized by re-ordering, grouping and/or partitioning the tape courses so as to reduce the non-productive motion of the machine. The optimized ordering is used by a NC program that controls the operation of the machine.
Abstract:
The operation of automated tape heads used to layup a composite structure is optimized in order to reduce layup time and better balance tape head loading. Ply data is generated that defines the ply segments and tape courses for each sequence of the layup. Each sequence is partitioned into groups of either ply segments or tape courses for the sequence. Multiple possible tape head assignments are generated in which the individual tape heads are assigned to the groups A final set of tape head assignments are selected based on the assignments that minimize the time required to complete the layup.
Abstract:
The off-part motion of an automatic composite tape laydown head is optimized to increase the overall rate at which tape is laid down to form doublers in a composite structure layup. Starting and stopping gates for each doubler are determined based on ply data and course definitions for the doublers. Using the gate locations, multiple possible paths between the doublers are analyzed to determine the best course for optimizing tape head travel. The selected course is used by an NC program that controls the operation of the tape head.
Abstract:
To model head assignments for a multihead composite material application machine having a set of heads, a ply geometry for a composite part is received and a configuration for the multihead composite material application machine is received. In addition, a constellation of head locations is generated in response to the ply geometry and the configuration for the multihead composite material application machine. Furthermore, a head location of the constellation of head locations is assigned to a corresponding head of the set of heads and a graphical model of the multihead composite material application machine applying the composite material upon the composite part is generated in response to the assigned head locations.
Abstract:
To model head assignments for a multihead composite material application machine having a set of heads, a ply geometry for a composite part is received and a configuration for the multihead composite material application machine is received. In addition, a constellation of head locations is generated in response to the ply geometry and the configuration for the multihead composite material application machine. Furthermore, a head location of the constellation of head locations is assigned to a corresponding head of the set of heads and a graphical model of the multihead composite material application machine applying the composite material upon the composite part is generated in response to the assigned head locations.
Abstract:
The operation of automated tape heads used to layup a composite structure is optimized in order to reduce layup time and better balance tape head loading. Ply data is generated that defines the ply segments and tape courses for each sequence of the layup. Each sequence is partitioned into groups of either ply segments or tape courses for the sequence. Multiple possible tape head assignments are generated in which the individual tape heads are assigned to the groups A final set of tape head assignments are selected based on the assignments that minimize the time required to complete the layup.
Abstract:
A composite part program generator includes a computer-aided design (CAD) system interface, a path generator, a course head manager, a post-processor and a machine simulator. The composite part program generator produces composite part programs for use on a multihead composite material application machine, such as a composite tape lamination machine or an automated fiber placement (AFP) machine, to manufacture a complex composite parts, including relatively flat, contoured, or generally cylindrical composite parts. This programming method can reduce the labor and time required to produce a composite part program for a multihead composite material application machine by an order of magnitude with respect to manual or existing automated programming methods.
Abstract:
To generate course head assignments for a multihead composite material application machine having a set of heads, a set of paths for a ply for a composite part is received and it is determined whether each path of the set of paths complies with a head characteristic for the set of heads. In addition, a special head of the set of heads is assigned to a non-standard path of the set of paths in response to determining the non-standard path does not comply with the head characteristic and ones of the set of heads are assigned to corresponding ones of the set of paths in response to the ones of the set of paths being in compliance with the head characteristics. Furthermore, a constellation of head locations is calculated in response to the set of paths being in compliance with the head characteristic and the set of heads are assigned to the constellation of head locations in response to calculating the constellation of head locations.
Abstract:
To generate course head assignments for a multihead composite material application machine having a set of heads, a set of paths for a ply for a composite part is received and it is determined whether each path of the set of paths complies with a head characteristic for the set of heads. In addition, a special head of the set of heads is assigned to a non-standard path of the set of paths in response to determining the non-standard path does not comply with the head characteristic and ones of the set of heads are assigned to corresponding ones of the set of paths in response to the ones of the set of paths being in compliance with the head characteristics. Furthermore, a constellation of head locations is calculated in response to the set of paths being in compliance with the head characteristic and the set of heads are assigned to the constellation of head locations in response to calculating the constellation of head locations.