Abstract:
A system for determining an optimized cut location for a work implement includes a position sensor and a controller. The controller is configured to determine the position of a work surface and perform a coarse analysis along a path based upon the position of the work surface and a coarse analysis parameter threshold to select a selected coarse analysis increment. The controller is further configured to perform a fine analysis along the selected coarse analysis increment based upon the position of the work surface and a fine analysis parameter threshold to select the optimized cut location.
Abstract:
A method and apparatus for managing machining. A desired level of engagement of a tool may be identified with a workpiece. A tool path for the tool may be generated relative to the workpiece. The tool path may have a number of levels of engagement of the tool with the workpiece along the tool path. The number of levels of engagement of the tool with the workpiece along the tool path may be based on the desired level of engagement.
Abstract:
A strip die is prepared with cutouts according to a pre-determined pattern, e.g., on a cutting table and positioned on a stripping station that has a removal tool to remove waste material. After a sheet of material is cut on the same or another cutting table, the sheet is positioned in the stripping station over the female strip die. The removal tool moves to programmed positions in the stripping station and removes pieces of waste material. The final stripped cut sheet is the brought to the out-stack.
Abstract:
The non-productive motion of an automatic composite tape laydown machine is optimized to increase the overall rate of the laydown. Ordering of tape courses is analyzed to determine the time required to move between courses using a time function that reflects operating characteristics and limitations of the tape laydown machine. The ordering is optimized by re-ordering, grouping and/or partitioning the tape courses so as to reduce the non-productive motion of the machine. The optimized ordering is used by a NC program that controls the operation of the machine.
Abstract:
A method for aligning a strip of labels, which contains a plurality of labels, relative to a cutting device, wherein the strip of labels is cut into labels by the cutting device that are subsequently applied to containers. In a learning mode, the strip of labels is automatically transported by a transport device and the position of the strip of labels relative to the cutting device is detected by a position sensor disposed as a first camera, and, in an aligning mode, an operator can then enter a desired cutting parameter in a machine control unit of an input unit. Information indicated of the desired cutting parameter relative to the strip of labels is then displayed to the operator on a screen, and the machine control unit controls the cutting device on the basis of the desired cutting parameter.
Abstract:
A precut module with one or more profiling heads and/or circular saws may be provided upstream of a saw module. The precut module may be used to implement a portion of a cut that would otherwise be made by the saw module, thereby reducing the depth of cut required at the saw module. In some embodiments, profiling heads may be used to profile a block that is wider than a desired side board. The block may be cut from the workpiece and sent to the edger. This may provide the same or better wood volume recovery and/or throughput speed than profiling the side board or cutting the side board from a flitch. In some embodiments, cut patterns for the precut module and other machine centers may be calculated and/or selected based on a desired depth of cut at the saw module, desired throughput speed, wood volume recovery, and/or other parameters.
Abstract:
Disclosed is a method and apparatus for machining a workpiece (2). The method comprises specifying a path along which a cutting tool (6) is moved during machining the workpiece (2), the path comprising segments (26); defining, for each segment (26), an exit point on that segment (26); defining, for each segment (26), an exit path (38) from the exit point of that segment (26) to a point remote from the workpiece (2); performing a machining process including moving the cutting tool (6) along the tool path and machining the workpiece (2); and, during the machining process, when one or more criteria are satisfied: interrupting the machining process and, without machining the workpiece (2), moving the cutting tool (6) to the exit point of the current segment (26) and then along the exit path (38) of the current segment (26).
Abstract:
A machining program editing apparatus that enables a machining program to be edited accurately in a short time, and a machine tool having the same, are provided. A machining program editing apparatus 1 for editing a machining program of a machine tool 10 includes a control means 5 for controlling the display content of a display means 3 for displaying the machining program. When a preset NC code, among the NC codes included in the machining program, is selected on the display means 3, the control means 5 allows an edit window 7 for inputting an editing content, according to the type of the NC code, to be displayed near the display position of the NC code.
Abstract:
Technology for milling selected portions of a workpiece by a cutting tool of a numerical control machine is described. The described technology provides methods and apparatuses for milling areas of a part so that more aggressive machining parameters can be used in the toolpath, thereby resulting in reduced machining time and load. The technology creates a series of toolpath contours where arcs in the toolpath contours are non-concentric with arcs in other toolpath contours. The selected portions of the workpiece are milled by moving the cutting tool in accordance with the toolpath.
Abstract:
Technology for milling selected portions of a workpiece by a cutting tool of a numerical control machine is described. The described technology provides methods and apparatuses for milling areas of a part so that more aggressive machining parameters can be used in the toolpath, thereby resulting in reduced machining time and load. The technology creates a series of toolpath contours where arcs in the toolpath contours are non-concentric with arcs in other toolpath contours. The selected portions of the workpiece are milled by moving the cutting tool in accordance with the toolpath.