Abstract:
In a method for separating magnetizable particles from a suspension, the suspension is passed through a cylinder-symmetrical separator wherein the substance streams are separated by at least one tubular separation screen. The separator separates the substance stream into a concentrate as well as a so-called tailing and the control of the separation rate of the concentrate and tailing is carried out solely by controlling the flow rate. To this end, at least one separation screen (11, 21) is displaceable in the separator (10, 20), so that a variable gap (15, 25) is formed.
Abstract:
A two- or three-phase mixture is sprayed using at least one nozzle which has associated therewith at least one structure-borne sound sensor for detecting a sound power level signal in the region of the nozzle and also at least one gas and/or liquid meter for detecting a volumetric flow of gas and/or liquid directed through the nozzle.
Abstract:
The invention relates to a drive unit (10) for a windscreen wiper device in a vehicle with a multiple-section housing (11) with a drive motor (1), more particularly connected to the housing (11), which is at least indirectly controllable by means of conductor leads (17), more particularly in the form of punched components, whereby the conductor leads (17) end in a plug connection (14) of the housing (11) via which the drive motor (1) is externally electrically powered, whereby the housing (11), at least in the housing section (12; 12a to 12c) accommodating the conductor leads (17) is designed as an injection moulded component, in which the conductor leads (17) are at least partially overmoulded with the material of the housing section (12; 12a to 12c). In accordance with the invention it is envisaged that the conductor rods (17) are also arranged in a sealed manner on the inside of the housing (19) so that the penetration of moisture into at least the section of the inside of the housing (19) overmoulded by the material of the housing section (12, 12a to 12c) is prevented.
Abstract:
In a method for separating magnetizable particles from a suspension, the suspension is passed through a cylinder-symmetrical separator wherein the substance streams are separated by at least one tubular separation screen. The separator separates the substance stream into a concentrate as well as a so-called tailing and the control of the separation rate of the concentrate and tailing is carried out solely by controlling the flow rate. To this end, at least one separation screen (11, 21) is displaceable in the separator (10, 20), so that a variable gap (15, 25) is formed.
Abstract:
The present invention relates to an agglomerate of at least one particle P which is hydrophobicized on the surface with at least one first surface-active substance and at least one magnetic particle MP which is hydrophobicized on the surface with at least one second surface-active substance, a process for producing it and also the use of these agglomerates.
Abstract:
The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material, which comprises at least the following steps: (A) contacting of the mixture comprising at least one first material and at least one second material with at least one surface-active substance, if appropriate in the presence of at least one dispersion medium, with the surface-active substance binding to the at least one first material, (B) if appropriate, addition of at least one dispersion medium to the mixture obtained in step (A) in order to obtain a dispersion, (C) treatment of the dispersion from step (A) or (B) with at least one hydrophobic magnetic particle so that the at least one first material to which the at least one surface-active substance is bound and the at least one magnetic particle agglomerate, (D) separation of the agglomerate from step (C) from the mixture by application of a magnetic field in order to obtain the agglomerate and a mixture M1 depleted in agglomerate, and repetition of the steps (A) to (D).
Abstract:
In devices for producing strong current high power impulses, the electronic components, which include passive components including capacitors and/or switch elements, including semi-conductor switches, diodes or similar elements, need to be protected against overcurrents in the event of an error function. Generally, serial resistance and serial inductance are used. The serial resistance and the serial inductance are combined together in such a manner that a coil having necessary resistance and inductance values is produced.
Abstract:
In a vacuum interrupter for circuit breakers, the aim is to reduce the contact pressure force. The contacts of the vacuum interrupter are configured for this purpose such that there is arranged inside an outer contact region, serving the purpose of arc quenching, an inner contact region which includes a plurality of resilient contact tongues arranged next to one another on a divided circle.
Abstract:
In switchgear with superordinate power circuit-breakers and a plurality of subordinate power circuit-breakers, the superordinate power circuit-breaker must be triggered in the event of failure of the subordinate power circuit-breakers. This is accomplished as follows: electrical post-arc currents are detected after current zero, the electrical post-arc currents are compared with a predetermined limit value, and if the limit value is exceeded, a signal is effected for triggering the superordinate power circuit-breaker in the switchgear. This method can advantageously be implemented in particular in the case of vacuum circuit-breakers with at least one vacuum interrupter. The associated arrangement has a device which monitors the subordinate power circuit-breakers and, if appropriate, triggers the superordinate power circuit-breaker.