摘要:
A method of leak detection for an evaporative emission control system to determine if a leak is present in a portion of the system includes the steps of energizing a leak detection pump to close a canister vent control valve of the system and pressurize the system, and determining whether a possible pinched line of the system has occurred.
摘要:
A method of pinched line detection for an evaporative emission control system to determine if a pinched line is present within the system includes the steps of pulsing a leak detection pump at a predetermined rate and determining if a last pump period is less than a predetermined possible pinched line period limit. The method also includes the steps of concluding a possible pinched line if the last pump period is not less than the possible pinched line period limit and concluding that there is not a possible pinched line if the last pump period is greater than or equal to the possible pinched line period limit.
摘要:
A method of de-pressurizing an evaporative emission control system includes the steps of pulsing a leak detection pump at a predetermined rate and purging accumulated vapors from a vapor canister. The method also includes the steps of determining whether a last pump period is greater than or equal to a predetermined system de-pressurization mode pump period and continuing the method if the last pump period is less than the system de-pressurization mode pump period.
摘要:
A method of checking for purge flow in an evaporative emission control system includes the steps of determining if there is a fault in a leak detection pump, de-energizing the leak detection pump if there is a fault, and determining the state of a leak detection pump switch. The method also includes the steps of concluding a pump switch closed state if the pump switch is not opened, concluding a pump switch opened state if the pump switch is not closed, and monitoring a purge duty cycle until the evaporative emission control system is depressurized.
摘要:
A method of leak detection for an evaporative emission control system during periods of low engine vacuum includes the steps of pulsing a leak detection pump at a predetermined rate and determining whether engine vacuum level is low. The method also includes the steps of maintaining pressurization of the evaporative emission control system if the engine vacuum level is low, maintaining pressurization behind a vapor canister vent valve if the engine vacuum level is low, and detecting for leaks in the evaporative emission control system after a normal engine vacuum level is attained.
摘要:
A method of testing an evaporative emission control system to determine if the evaporative emission control system has reached a predetermined pressure includes the steps of pulsing a leak detection pump at a predetermined rate and determining if a last pump period is greater than or equal to a predetermined test mode period threshold. The method also includes the steps of pressurizing the evaporative emission control system if the last pump period is less than a test mode period threshold and continuing the method if the last pump period is equal to or greater than the test mode period threshold.
摘要:
A method is provided for testing an evaporative emission control system for a missing or loose fuel cap comprising detecting a refueling event and running a leak detection test of the evaporative emission control system to determine if a large leak is present. If a large leak is detected, the methodology sets a fault code and activates a driver warning lamp indicating a potential cap sealing problem. The leak detection test is repeatedly re-executed after the large leak is detected to determine when the large leak condition ceases. When the large leak condition ceases, the previously set fault code is removed and the driver warning lamp is deactivated. If the large leak does not cease and is detected again after the next refueling event when an opportunity for resealing the cap existed, a new fault code is set indicating that the potential cap sealing problem is a persistent problem so that the integrity of the evaporative system may need to be tested. After setting the new fault code, fuel cap specific leak detection testing is suspended until the condition is serviced and the fault code is cleared or a normal leak detection test determines that there is no longer a problem. If no large leak is detected, the fuel cap is assumed to be properly sealed.
摘要:
A method of controlling a purge solenoid for a purge control system of an internal combustion engine is provided. The method includes the steps of determining whether predetermined conditions are right for duty cycling the purge solenoid and turning the purge solenoid OFF if predetermined conditions are not right and obtaining a duty cycle for the purge solenoid based on a duty cycle flow (DCFLOW) if predetermined conditions are right. The method also includes the steps of determining an output level of the purge solenoid based on the obtained duty cycle and controlling the purge solenoid to the obtained duty cycle.
摘要:
A method is provided for cleansing a seal of a device used for sealing an evaporative emission control system of an automotive vehicle. The method starts by determining if a request to close the device has been made. If the request to close the device has been made, the method cycles the device a plurality of times to press and lift the seal off of a seat repeatedly. The method also determines if the seal is closed after the cycling step. If the seal is not closed after the cycling step, the method closes the seal. Preferably, the cycling step includes cycling the device at a pre-selected duty cycle, frequency and cycle count. The duty cycle, frequency, and cycle count correspond to calibration tables prepared for the particular device employed to insure that the seal strikes its seat about three times before sealing.
摘要:
A method is provided for detecting a small or gross leak in an evaporative emission control system of an automotive vehicle. The method includes initially purging and then sealing the evaporative emission control system. A vacuum switch coupled to the evaporative emission control system is then monitored for an opening event caused by a loss of a natural vacuum created in the evaporative emission control system. If said opening event is detected, the method determines if a leak check timer has exceeded a first or second predetermined threshold value. If the leak check timer has not exceeded said first predetermined threshold value a first fault code is set indicating that the gross leak has been detected. If the leak check timer has not exceeded the second predetermined threshold value, a second fault code is set indicating that the small leak has been detected. The first threshold value corresponds to an amount of time required for a leak to be detected having a diameter of about 0.070 inches or greater. The second threshold value corresponds to an amount of time required for a leak to be detected having a diameter of about 0.040 inches or greater.