Abstract:
A system and method for controlling the volume ratio of a compressor is provided. The system can use a port (88) or ports in a rotor cylinder to bypass vapor from the compression chamber to the discharge passage of the compressor. A control valve (90) can be used to open or close the port or ports to obtain different volume ratios in the compressor. The control valve (90) can be moved or adjusted by one or more valves that control a flow of fluid to the valve. A control algorithm can be used to control the one or more valves to move the control valve to obtain different volume ratios from the compressor. The control algorithm can control the one or more valves in response to operating parameters associated with the compressor.
Abstract:
A system is provided for adjusting the volume ratio of a screw compressor. The system can use a port in a rotor cylinder to bypass vapor from the compression chamber to the discharge passage of the compressor. A valve can be used to open or close the port to obtain different volume ratios in the compressor.
Abstract:
A compressor is provided with a substantially cylindrical housing. Inside the housing is a motor housing having a substantially cylindrical shape and a compressor housing having a substantially cylindrical shape. The motor housing and the compressor housing are connected or fit into the housing with a frictional connection to prevent axial movement of the motor housing and the compressor housing.
Abstract:
In a screw compressor, guide bushings are mounted within bores for the bearings which support rotor shafts for the compressor. First bushings are provided at an inlet casing of the compressor and provide guidance for a slide stop and second bushings are provided in an outlet casing of the compressor to provide guidance for a slide valve. The bushings are also mounted to the inlet and outlet casings to provide centering for two sections of the compressor rotor housing. In one embodiment the first and second bushings provide guidance for a slide valve.
Abstract:
A system is provided for controlling the balance piston pressure in a screw compressor. The system can use the slide valve of the compressor as a valve to control the flow of fluid from a fluid source to the balance piston. When the slide valve prevents direct flow between the fluid source and the balance piston, an alternate path is used to provide fluid at a reduced pressure to the balance piston. The reduced pressure fluid is obtained by passing the fluid from the fluid source through an orifice to lower the fluid pressure.
Abstract:
A backflow and strainer device is presented. The device is a unitary unit that prevents backflow of fluid gas in a compressor and prevents dirt particles and debris from entering the compressor, thereby damaging the components. A valve mechanism moves between an open position and a closed position to either allow or prevent fluid gas from flowing into the compressor. A mesh portion is disposed in the device to trap all dirt particles and debris to prevent them from entering the compressor. The valve mechanism responds to the higher and lower pressures associated with the operation and shutdown of compressors.
Abstract:
A variable speed drive (VSD) can be used to vary the voltage-to-frequency ratio (V/f) supplied to a compressor motor of a heating, ventilation, air conditioning or refrigeration (HVAC&R) system to make the motor stronger or weaker to compensate for varying conditions in the HVAC&R system. The VSD and corresponding control system or algorithm can monitor an operating parameter of the HVAC&R system, such as the kW absorbed by the motor, and then raise or lower the V/f of the VSD to obtain the lowest possible power consumption from the motor.
Abstract:
A compressor including a compression mechanism configured and positioned to receive vapor from an intake passage and provide compressed vapor to a discharge passage. An opening is positioned in the compression mechanism in fluid communication with the discharge passage. A valve has an aperture formed therein, the aperture configured and positioned in fluid communication with a passageway to provide a path for a pressurized vapor flow to a first chamber and a first piston without mixing with vapor in the discharge passage. A second chamber is in fluid communication with a second piston and the discharge passage, the first piston and the second piston of the valve configured to move together. First piston and second piston movement are controllable in response to predetermined conditions to maintain the magnitude of pressure of the compression mechanism immediately upstream of the opening at substantially the same pressure magnitude at the discharge passage.
Abstract:
A system is provided for attenuating noise in at least two positive displacement compressors proximately located from each other for use with at least one heating or cooling system. A lead compressor and a lag compressor have a selectably controllable rotational speed and a selectably controllable phase of operation. A controller selectably controls the rotational speed and the phase of operation of each of the compressors. The controller controls the rotational speed of the compressors at a predetermined rotational speed that is substantially the same for each of the compressors. The controller controls the phase of operation of the compressors by shifting the phase of operation of the lag compressor so that an outlet pressure pulse operatively produced by the lag compressor is substantially evenly spaced between successive outlet pressure pulses operatively produced by the reference compressor.
Abstract:
An attenuating apparatus for use with a positive displacement compressor. The device includes a bore formed in a housing of the compressor, the bore being positioned at an angle to a discharge chamber of the compressor and in fluid communication with the compressor discharge chamber. A plug is positioned within the bore, the plug movable within the bore to a preselected position. The plug has a first end in contact with a gas from the compressor discharge chamber and a second, opposite end being accessible from an exterior of the housing. A seal is positioned between the plug and the bore to seal an interface between the plug and the bore to prevent leakage of a gas from the compressor discharge chamber along the interface. The plug is lockable within the bore at the preselected position. The preselected position of the plug within the bore determines a bore length in fluid communication with the compressor discharge chamber, which attenuates sound from gas pulsations resulting from discharge of compressed gas from the operation of the compressor. The bore and plug are threaded to facilitate the adjustment of the plug within the bore.