Abstract:
A dispenser is provided for dispensing from a roll of tape or labels in a predetermined length, which dispenser includes an inner shell carrying a roll of tape or labels to be dispensed through an outlet opening, an outer housing rotatable for a limited distance with respect to the inner shell with an outlet opening for the tape or labels and an interposed friction lock for advancing the tape or labels for dispensing.
Abstract:
A temperature resistant, structural polymer nanocomposite foam may be formed from an amorphous or semi-crystalline, thermoplastic polymer matrix and a nano smectite clay intercalated and/or exfoliated in the polymer. The nano smectite clay may be coated with an organophilic surfactant. A polymer foam may be formed by forming a precursor material from an amorphous or semi-crystalline, thermoplastic polymer. The precursor material may be infused with a supercritical fluid at a process temperature of less than approximately 340° C. and a process pressure of at least 10 MPa. The precursor material may be foamed using the supercritical fluid by suddenly decreasing the pressure on the precursor material. The precursor material may also contain a nano smectite clay. It may be formed into a molded preform. The polymer foam formation process may include net-molding.
Abstract:
Systems and methods by which voice/data communications may occur in multiple modes/protocols are disclosed. In particular, systems and methods are provided for multiple native mode/protocol voice and data transmissions and receptions with a computing system having a multi-bus structure, including, for example, a TDM bus and a packet bus, and multi-protocol framing engines. Such systems preferably include subsystem functions such as PBX, voice mail and other telephony functions, LAN hub and data router or switch functions. In preferred embodiments, a TDM bus and a packet bus are intelligently bridged and managed, thereby enabling such multiple mode/protocol voice and data transmissions to be intelligently managed and controlled with a single, integrated system. In particular, systems and methods for generating required telephony voltages directly on station cards, rather than on the basis of a large, central ringing or other power supply that supply such telephony voltages to each of the station cards, are disclosed. In accordance with the present invention, a plurality of station cards are provided in the telephony or communications system. One or more DC power supplies provide a source of DC voltage, such as 12 volts, to each of the station cards. The station cards are coupled to a processor of the system. The station cards may support a plurality of analog and/or digital telephony devices, such as telephones facsimile, voice mail, recording, speakerphone, conferencing or other type telephony devices.