Abstract:
A method of particle detection in an aspirated particle detection system having a sampling pipe network and a particle detector. The method includes drawing sample air to the particle detector through the air sampling network; analyzing the sample air with the particle detector; entering an amplification phase, in the event that a concentration of particles in the sample air greater than a predetermined threshold is detected, to create a plurality of sample air packets in the sampling pipe, wherein each sample air packet corresponds to a sampling inlet and includes an amplified concentration of air drawn from the corresponding sampling inlet; transporting the sample air including the plurality of sample air packets through the sampling pipe to the particle detector; and determining through which sampling inlet any particles entered the particle detection system.
Abstract:
A beam detector including a light source, a receiver, and a target, acting in cooperation to detect particles in a monitored area. The target reflects incident light, resulting in reflected light being returned to receiver. The receiver is capable of recording and reporting light intensity at a plurality of points across its field of view. In the preferred form the detector emits a first light beam in a first wavelength band; a second light beam in a second wavelength band; and a third light beam in a third wavelength band, wherein the first and second wavelengths bands are substantially equal and are different to the third wavelength band.
Abstract:
A particle detector, e.g. a smoke detector is described. In one form the detector includes a detection chamber and radiation source emitting a single beam of radiation. The detector also includes a radiation receiving system and an imaging system arranged to receive radiation from a common region of interest. Methods and systems for analysing the output of a particle detector are also disclosed.
Abstract:
A beam detector including a light source, a receiver, and a target, acting in cooperation to detect particles in a monitored area. The target reflects incident light, resulting in reflected light being returned to receiver. The receiver is capable of recording and reporting light intensity at a plurality of points across its field of view. In the preferred form the detector emits a first light beam in a first wavelength band; a second light beam in a second wavelength band; and a third light beam in a third wavelength band, wherein the first and second wavelengths bands are substantially equal and are different to the third wavelength band.
Abstract:
A particle detection system including; at least one light source adapted to illuminate a volume being monitored at at least two wavelengths; a receiver having a field of view and being adapted to receive light from at least one light source after said light has traversed the volume being monitored and being adapted to generate signals indicative of the intensity of light received at regions within the field of view of the receiver; a processor associated with the receiver adapted to process the signals generated by the receiver to correlate light received at at least two wavelengths in corresponding regions within the field of view of the receiver and generate an output indicative of the relative level of light received at the two wavelengths.
Abstract:
A particle detector, e.g. a smoke detector is described. In one form the detector includes a detection chamber and radiation source emitting a single beam of radiation. The detector also includes a radiation receiving system and an imaging system arranged to receive radiation from a common region of interest. Methods and systems for analyzing the output of a particle detector are also disclosed.
Abstract:
An air sampling system for a low-temperature space is disclosed. The air sampling system includes an air sampling pipe for passing sampling air to an air sampling device, and a sampling conduit extending from the low-temperature space to outside the low-temperature space. The sampling conduit is connected to the sampling pipe. The sampling conduit is selectively accessible from outside the low-temperature space for removal of ice build-up within the sampling conduit. Also disclosed is a kit for an air sampling system. Also disclosed is a method, computing system, air-sampling device and air monitoring system that evaluates an air sampling network.
Abstract:
A method of particle detection in an aspirated particle detection system having a sampling pipe network and a particle detector. The method includes drawing sample air to the particle detector through the air sampling network; analyzing the sample air with the particle detector; entering an amplification phase, in the event that a concentration of particles in the sample air greater than a predetermined threshold is detected, to create a plurality of sample air packets in the sampling pipe, wherein each sample air packet corresponds to a sampling inlet and includes an amplified concentration of air drawn from the corresponding sampling inlet; transporting the sample air including the plurality of sample air packets through the sampling pipe to the particle detector; and determining through which sampling inlet any particles entered the particle detection system.
Abstract:
An air sampling system for a low-temperature space is disclosed. The air sampling system includes an air sampling pipe for passing sampling air to an air sampling device, and a sampling conduit extending from the low-temperature space to outside the low-temperature space. The sampling conduit is connected to the sampling pipe. The sampling conduit is selectively accessible from outside the low-temperature space for removal of ice build-up within the sampling conduit. Also disclosed is a kit for an air sampling system. Also disclosed is a method, computing system, air-sampling device and air monitoring system that evaluates an air sampling network.