Abstract:
An image processing system includes a memory for storing data associated with pixels of images, with the pixels having spatial coordinates in an image coordinate system having first and second axes; a processing device including a processor which processes the associated data; and an interface device which accesses in memory addresses associated with pixels of a block of pixels. In the interface device, access information is received indicating a base memory address, information regarding the dimensions of the block along the axes of the image coordinate system, and a storage method. At least one access rule is selected from multiple rules as a function of the storage method. The memory is accessed at the addresses associated with the pixels in the block, by applying the selected rule starting from the base address and taking into account the dimensions of the block.
Abstract:
A generator of a signal including a memory in which instructions are stored, each instruction including a code portion and an argument portion; circuitry for successively reading instructions stored in the memory; decoding circuitry capable of receiving, for each read instruction, the code portion of the instruction and of providing an activation signal which depends on the code portion; and circuitry for providing the signal capable of receiving, for each read instruction, the argument portion of the instruction and capable, according to the activation signal, of storing the argument portion and of providing the signal equal to the argument portion or of providing the signal equal to the previously-stored argument portion.
Abstract:
This system for processing digital data may include a set of slave processing units for the execution of elementary functions, an interconnection module, which is designed to communicate with a data transfer network and to transfer data between the processing units, on the one hand, and the data transfer network, on the other hand, and a controller controlling the interconnection module to control the data transfer.
Abstract:
A generator of a signal including a memory in which instructions are stored, each instruction including a code portion and an argument portion; circuitry for successively reading instructions stored in the memory; decoding circuitry capable of receiving, for each read instruction, the code portion of the instruction and of providing an activation signal which depends on the code portion; and circuitry for providing the signal capable of receiving, for each read instruction, the argument portion of the instruction and capable, according to the activation signal, of storing the argument portion and of providing the signal equal to the argument portion or of providing the signal equal to the previously-stored argument portion.
Abstract:
A device is for detecting a relative positioning of two clock signals including a fast clock signal and a slow clock signal. The fast clock frequency may be n times greater than a slow clock frequency, and n includes an integer greater than 1. The device includes a phase logic signal generator for generating a phase logic signal from the two clock signals by assigning a predetermined logic value to the phase logic signal when a rising edge of the fast clock signal matches a predetermined location of the slow clock signal.
Abstract:
A system on chip comprises a CPU, a local memory a data processing module, and a DMA controller. The DMA controller comprises a first interface to handle data transmissions, to and from the local memory, associated with an indication to the local memory of an address in local memory, and is designed to perform data writes and reads in the local memory via this interface. The DMA controller also comprises a second interface, which in response to a command received from the central processing unit, operations for writing and reading data in the local memory via the first interface. The DMA controller also comprises a third interface with the processing module to transmit to it the data read, via the first interface, in the local memory, this transmission not being associated with an indication to the processing module, by the DMA controller, of an address.
Abstract:
A system on chip comprises a CPU, a local memory a data processing module, and a DMA controller. The DMA controller comprises a first interface to handle data transmissions, to and from the local memory, associated with an indication to the local memory of an address in local memory, and is designed to perform data writes and reads in the local memory via this interface. The DMA controller also comprises a second interface, which in response to a command received from the central processing unit, operations for writing and reading data in the local memory via the first interface. The DMA controller also comprises a third interface with the processing module to transmit to it the data read, via the first interface, in the local memory, this transmission not being associated with an indication to the processing module, by the DMA controller, of an address.
Abstract:
The present invention relates to a method for regulating, in the read mode, memory areas of a circuit for decompressing a video data flow compressed according to an MPEG standard, with respect to the writing rate of the compressed data flow into the memory areas, the decompression circuit issuing a flow of image data at the rate of signals for horizontally and vertically synchronizing the images issued by a circuit for coding according to a color television standard, this method including generating a clock signal having a fixed frequency for reading from the memory areas and for generating the horizontal and vertical synchronization signals, and shifting the occurrence of an edge triggering the vertical synchronization signal based on a signal indicative of the state of a buffer memory associated with the memory areas.
Abstract:
This system for processing digital data may include a set of slave processing units for the execution of elementary functions, an interconnection module, which is designed to communicate with a data transfer network and to transfer data between the processing units, on the one hand, and the data transfer network, on the other hand, and a controller controlling the interconnection module to control the data transfer.
Abstract:
Data stored in a first memory are processed by a processing device comprising a processor, a second memory, and an interface device interfacing the processing of data from the first memory. In the interface device, in order to facilitate transfer of data from the first memory where data are stored in a first data format to the second memory where data are stored in a second data format, a first group of data is received from the first memory, with said group ordered into a sequence corresponding to the first data format. Then at least one second group of data is obtained by ordering said data in the first group into a new sequence which is a function of the first and second data formats. The second group of data is stored in the second memory.