Abstract:
A method, system, and apparatus for parking occupancy detection comprises collecting video of a blockface with at least one video recording module, identifying a number of possible parking spaces along the blockface in the collected video, defining, a region of interest for each of the possible parking spaces, detecting a time dependent occupancy of the defined regions of interest for each of the possible parking spaces, and reporting the time dependent occupancy. Drift correction of the recorded video and ground truth comparisons of occupancy determinations may be provided.
Abstract:
A method, system, and apparatus for video frame alignment comprises collecting video data comprising at least two video frames; extracting a line profile along at least one line profile in each of the at least two video frames; selecting one of the at least two video frames as a reference video frame; segmenting each of the at least one line profiles into a plurality of segmented line profile group segments; aligning the plurality of segmented line profiles with the segmented line profiles in the reference video frame; translating each of the at least two video frames for each of the plurality of corresponding segmented line profile alignments; and removing a camera shift from the at least two video frames according to the translation and alignment of the plurality of segmented line profiles with the plurality of segmented line profile in the reference video frame.
Abstract:
Method and system for dynamically adjusting compensation for one or more tasks are disclosed. The method includes estimating the compensation for each task in a batch of tasks based on at least one of a minimum wage for a task in the batch of tasks, one or more attributes associated with the worker, a number and type of tasks in the batch of tasks, or a target level of service. The compensation for the each task of the batch of tasks is then adjusted based on at least one of an observed level of service associated with the batch of tasks and the target level of service. The method is performed using a processor.
Abstract:
A method, system, and apparatus for parking occupancy detection comprises collecting video of a blockface with at least one video recording module, identifying a number of possible parking spaces along the blockface in the collected video, defining, a region of interest for each of the possible parking spaces, detecting a time dependent occupancy of the defined regions of interest for each of the possible parking spaces, and reporting the time dependent occupancy. Drift correction of the recorded video and ground truth comparisons of occupancy determinations may be provided.
Abstract:
Methods, systems and processor-readable media for modeling and optimizing multiple ITS (Intelligent Transportation System) strategies utilizing a systematic genetic algorithm. A traffic simulation model can be configured in conjunction with a genetic algorithm based optimization engine for optimizing the transportation models. An origin-destination matrix that minimizes discrepancies between a simulated and an observed link traffic count can be estimated by considering a road network and a traffic count with respect to a region. A driver behavior can then be determined utilizing the origin-destination matrix via calibration so that the simulation model can replicate a freeway traffic flow in the region. An optimal parameter with respect to the ITS strategies can be determined to optimize a set goal with respect to a given constraint. Such an approach meets a level of service (LOS) metric as well as a revenue target under the applied ITS strategies.
Abstract:
A method, system, and apparatus for video frame alignment comprises collecting video data comprising at least two video frames; extracting a line profile along at least one line profile in each of the at least two video frames; selecting one of the at least two video frames as a reference video frame; segmenting each of the at least one line profiles into a plurality of segmented line profile group segments; aligning the plurality of segmented line profiles with the segmented line profiles in the reference video frame; translating each of the at least two video frames for each of the plurality of corresponding segmented line profile alignments; and removing a camera shift from the at least two video frames according to the translation and alignment of the plurality of segmented line profiles with the plurality of segmented line profile in the reference video frame.
Abstract:
Methods, systems and processor-readable media for modeling and optimizing multiple ITS (Intelligent Transportation System) strategies utilizing a systematic genetic algorithm. A traffic simulation model can be configured in conjunction with a genetic algorithm based optimization engine for optimizing the transportation models. An origin-destination matrix that minimizes discrepancies between a simulated and an observed link traffic count can be estimated by considering a road network and a traffic count with respect to a region. A driver behavior can then be determined utilizing the origin-destination matrix via calibration so that the simulation model can replicate a freeway traffic flow in the region. An optimal parameter with respect to the ITS strategies can be determined to optimize a set goal with respect to a given constraint. Such an approach meets a level of service (LOS) metric as well as a revenue target under the applied ITS strategies.