摘要:
The present disclosure relates to a method for making a transmission electron microscope grid. The method includes: (a) providing a substrate with a graphene layer on a surface of the substrate; (b) applying a carbon nanotube film structure to cover the graphene layer; (c) removing the substrate, to obtain a graphene layer-carbon nanotube film composite structure; and (d) placing the graphene layer-carbon nanotube film composite structure on a grid.
摘要:
A transmission electron microscope (TEM) micro-grid includes a grid, a carbon nanotube film structure and two electrodes electrically connected to the carbon nanotube film structure.
摘要:
A transmission electron microscope (TEM) micro-grid includes a metallic grid and a carbon nanotube film structure covered thereon. A method for making a TEM micro-grid includes the steps of: (a) providing an array of carbon nanotubes, quite suitably, providing a super-aligned array of carbon nanotubes; (b) drawing a carbon nanotube film from the array of carbon nanotubes; (c) covering the carbon nanotube film on a metallic grid, and treating the carbon nanotube film and the metallic grid with an organic solvent.
摘要:
A transmission electron microscope (TEM) micro-grid includes a grid and a heater including at least one carbon nanotube film structure located on the grid. The micro-grid with the at least one carbon nanotube film structure prevents a floating of the sample located on the micro-grid to increase the quality of TEM images.
摘要:
A method for making transmission electron microscope gird is provided. An array of carbon nanotubes is provided and drawing a carbon nanotube film from the array of carbon nanotubes. A substrate has a plurality of spaced metal girds attached on the substrate. The metal girds are covered with the carbon nanotube film and treating the carbon nanotube film and the metal girds with organic solvent. A transmission electron microscope (TEM) grid is obtained by removing remaining CNT film.
摘要:
A transmission electron microscope (TEM) micro-grid includes a metallic grid and a carbon nanotube film structure covered thereon. A method for making a TEM micro-grid includes the steps of: (a) providing an array of carbon nanotubes, quite suitably, providing a super-aligned array of carbon nanotubes; (b) drawing a carbon nanotube film from the array of carbon nanotubes; (c) covering the carbon nanotube film on a metallic grid, and treating the carbon nanotube film and the metallic grid with an organic solvent.
摘要:
A membrane electrode assembly includes a proton exchange membrane and at least one electrode. The at least one electrode includes a carbon nanotube composite structure. The carbon nanotube composite structure includes a carbon nanotube structure and a catalyst material. The carbon nanotube structure includes a plurality of carbon nanotubes and the catalyst material is dispersed on the carbon nanotubes. A fuel cell using the membrane electrode assembly is also provided.
摘要:
The present invention relates to a method for making a carbon nanotube film composite structure. A carbon nanotube film structure and a dispersed solution are provided. The dispersed solution includes a solvent and an amount of graphene sheets dispersed in the solvent. The dispersed solution is applied on a surface of the carbon nanotube film structure. The solvent is removed. The present invention also relates to a method for making a transmission electron microscope grid and a method for making more than one transmission electron microscope grid.
摘要:
The present invention relates to a transmission electron microscope grid including graphene sheet-carbon nanotube film composite. The graphene sheet-carbon nanotube film composite structure includes at least one carbon nanotube film structure and at least one graphene sheet. The carbon nanotube film structure includes at least one pore. The pore is covered by the graphene sheet.
摘要:
A membrane electrode assembly includes a proton exchange membrane, a first electrode and a second electrode. The proton exchange membrane has two opposite surfaces, a first surface and a second surface. The first electrode is located adjacent to the first surface of the proton exchange membrane, and the first electrode includes a first diffusion layer and a first catalyst layer. The second electrode is located adjacent to the second surface of the proton exchange membrane, and the second electrode includes a second diffusion layer and a second catalyst layer. At least one of the first diffusion layer and the second diffusion layer includes a carbon nanotube structure. A fuel cell using the membrane electrode assembly is also provided.