摘要:
The present disclosure relates to a method for making a transmission electron microscope grid. The method includes: (a) providing a substrate with a graphene layer on a surface of the substrate; (b) applying a carbon nanotube film structure to cover the graphene layer; (c) removing the substrate, to obtain a graphene layer-carbon nanotube film composite structure; and (d) placing the graphene layer-carbon nanotube film composite structure on a grid.
摘要:
A transmission electron microscope (TEM) micro-grid includes a grid, a carbon nanotube film structure and two electrodes electrically connected to the carbon nanotube film structure.
摘要:
A transmission electron microscope (TEM) micro-grid includes a metallic grid and a carbon nanotube film structure covered thereon. A method for making a TEM micro-grid includes the steps of: (a) providing an array of carbon nanotubes, quite suitably, providing a super-aligned array of carbon nanotubes; (b) drawing a carbon nanotube film from the array of carbon nanotubes; (c) covering the carbon nanotube film on a metallic grid, and treating the carbon nanotube film and the metallic grid with an organic solvent.
摘要:
A transmission electron microscope (TEM) micro-grid includes a grid and a heater including at least one carbon nanotube film structure located on the grid. The micro-grid with the at least one carbon nanotube film structure prevents a floating of the sample located on the micro-grid to increase the quality of TEM images.
摘要:
A method for making transmission electron microscope gird is provided. An array of carbon nanotubes is provided and drawing a carbon nanotube film from the array of carbon nanotubes. A substrate has a plurality of spaced metal girds attached on the substrate. The metal girds are covered with the carbon nanotube film and treating the carbon nanotube film and the metal girds with organic solvent. A transmission electron microscope (TEM) grid is obtained by removing remaining CNT film.
摘要:
A transmission electron microscope (TEM) micro-grid includes a metallic grid and a carbon nanotube film structure covered thereon. A method for making a TEM micro-grid includes the steps of: (a) providing an array of carbon nanotubes, quite suitably, providing a super-aligned array of carbon nanotubes; (b) drawing a carbon nanotube film from the array of carbon nanotubes; (c) covering the carbon nanotube film on a metallic grid, and treating the carbon nanotube film and the metallic grid with an organic solvent.
摘要:
An optical polarizer includes a supporting element and an optical polarizing film supported by the supporting element. The optical polarizing film includes a carbon nanotube film structure and a metallic layer disposed on the carbon nanotube film structure.
摘要:
A method for stretching a carbon nanotube film includes providing one or more carbon nanotube films and one or more elastic supporters, attaching at least one portion of the one or more carbon nanotube films to the one or more elastic supporters, and stretching the elastic supporters.
摘要:
A method for measuring intensity distribution of light includes a step of providing a carbon nanotube array having a top surface. The carbon nanotube array is located in an inert gas environment or a vacuum environment. A light source irradiates the top surface of the carbon nanotube array, to make the carbon nanotube array radiate a radiation light. An imaging element images the radiation light, to obtain an intensity distribution of the light source.
摘要:
The present disclosure provides a thin film transistor which includes a source electrode, a drain electrode, a semiconducting layer, an insulating layer and a gate electrode. The drain electrode is spaced apart from the source electrode. The semiconducting layer is electrically connected with the source electrode and the drain electrode. The gate electrode is insulated from the source electrode, the drain electrode, and the semiconducting layer by the insulating layer. At least one of the gate electrode, the drain electrode, the source electrode includes a carbon nanotube composite layer.